

Leerplen

De Vlaamse minister van Onderwijs en Ambtenarenzaken heeft zijn goedkeuring gehecht aan het leerplan 'Wiskunde'.

Brief van de inspecteur-generaal Basisonderwijs met als kenmerk 131/IBAO/R.S./bp/98251

- CRKLKO 1998

Vierde druk: 2002
Alles uit deze uitgave mag voor correct gebruik binnen onderwijs en begeleiding worden gekopieërd.
De bron dient dan evenwel te worden vermeld.
Voor handelsdoeleinden mag niets van deze uitgave, in gelijk welke vorm ook, openbaar worden gemaakt behalve met de uitdrukkelijke toestemming van de uitgever.

Illustraties: Inge Van Royen
Inhoud 3
Ten geleide 7
DEEL 1: KRACHTLIJNEN 9
1 Naar een nieuw leerplan voor het leergebied wiskunde 9
2 De waarde van wiskunde in het basisonderwijs 11
2.1 Praktische en maatschappelijke waarde 11
2.2 Vormende waarde 11
2.3 Opbouwende waarde 12
2.4 Culturele waarde 12
3 Wiskundige activiteit in het basisonderwijs 13
4 Wiskundige initiatie in het kleuteronderwijs 15
5 Aspecten van de beginsituatie 17
6 De algemene doelen en het streefdoel van wiskundeonderwijs 19
6.1 Algemene doelen voor wiskundeonderwijs in het basisonderwijs 19
6.2 Het streefdoel van wiskundeopvoeding in het basisonderwijs 22
7 Wiskundeonderwijs didactisch organiseren 23
7.1 Actieve leerprocessen stimuleren 23
7.2 Aansluiten bij wat kinderen al beheersen 24
7.3 Kennis en vaardigheden stapsgewijs opbouwen 25
7.4 Betekenisvolle situaties en opgaven aanbieden door heel de leergang heen 25
7.5 Hulpmiddelen aanreiken 26
7.6 Nadenken over wiskundige activiteiten in interactief wiskundeonderwijs 26
7.7 Diagnosticerend onderwijzen 27
7.8 Wiskunde en schoolwerkplanning 28
8 Evaluatie bij wiskunde 31
8.1 Inleiding 31
8.2 Wiskundeleren evalueren 32
8.2.1 Evaluatie van het resultaat en de wijze waarop het resultaat wordt bereikt 32
8.2.2 Informatie verzamelen 32
8.2.3 Informatie waarderen 35
8.3 Zelfevaluatie door kinderen 35
8.4 Wiskundeonderwijs evalueren 36
9 Leerdomeinen binnen wiskunde in het basisonderwijs 37
DEEL 2: LEERDOMEINEN 39
1 Getallenkennis 39
1.1 Inleiding 39
1.2 Doelen en leerinhouden 40
1.2.1 Hoeveelheden vergelijken en ordenen 40
1.2.2 Tellen 40
1.2.3 Hoeveelheden herkennen en vormen 40
1.2.4 Natuurlijke getallen 41
1.2.5 Breuken 42
1.2.6 Kommagetallen 42
1.2.7 Percenten 43
1.2.8 Negatieve getallen 43
1.2.9 Delers en veelvouden 43
1.2.10 Andere talstelsels 44
1.2.11 Getallen schatten en afronden 44
1.2.12 Toepassingen 44
2 Bewerkingen 47
2.1 Inleiding 47
2.2 Doelen en leerinhouden 48
2.2.1 Van situaties naar bewerkingen en omgekeerd 48
2.2.2 Inzicht in de eigenschappen van en de relaties tussen bewerkingen 49
2.2.3 Hoofdrekenen 50
2.2.3.1 Natuurlijke getallen 50
2.2.3.2 Breuken 53
2.2.3.3 Kommagetallen 53
2.2.3.4 Percenten 54
2.2.4 Schattend rekenen 55
2.2.5 Cijferen 55
2.2.6 De zakrekenmachine gebruiken 57
2.2.7 Toepassingen 57
3 Meten en metend rekenen 59
3.1 Inleiding 55
3.2 Doelen en leerinhouden 60
3.2.1 Vergelijken zonder een maateenheid te gebruiken 60
3.2.2 Meten met natuurlijke maateenheden 60
3.2.3 Meten en metend rekenen met standaardmaateenheden 62
3.2.3.1 Lengte 63
3.2.3.2 Oppervlakte 64
3.2.3.3 Inhoud en volume 66
3.2.3.4 Gewicht 67
3.2.3.5 Tijdstip en tijdsduur 68
3.2.3.6 Geldwaarden 69
3.2.3.7 Temperatuur 69
3.2.3.8 Hoekgrootte 69
3.2.4 Toepassingen 70
4 Meetkunde 73
4.1 Inleiding 73
4.2 Doelen en leerinhouden 74
4.2.1 Ruimtelijke oriëntatie 74
4.2.2 Vormleer 75
4.2.2.1 Punten, lijnen en vlakken 75
4.2.2.2 Hoeken 75
4.2.2.3 Vlakke figuren 76
4.2.2.4 Ruimtefiguren 77
4.2.3 Meetkundige relaties 78
4.2.3.1 Evenwijdigheid 78
4.2.3.2 Loodrechte stand 78
4.2.3.3 Symmetrie 79
4.2.3.4 Gelijkheid van vorm én grootte en gelijkvormigheid 79
4.2.4 Toepassingen 79
5 Domeinoverschrijdende doelen 81
5.1 Inleiding 81
5.2 Doelen en leerinhouden 83
5.2.1 Wiskundige problemen leren oplossen 83
5.2.2 Wiskundige leertaken leren aanpakken 84
5.2.3 Leren communiceren over wiskunde 85
DEEL 3: BIJLAGEN 86
1 Concordantie met de ontwikkelingsdoelen en eindtermen 86
2 Minimale materiële vereisten 94
3 Bibliografie 95

Wiskunde in het basisonderwijs

Een eigentijds antwoord

Een proces

Kennis, inzichten, vaardigheden en attitudes

Wiskundeonderwijs organiseren

Dit is het nieuwe leerplan 'Wiskunde'. Het handelt over wiskundige initiatie in het kleuteronderwijs en wiskunde in het lager onderwijs.

Onze maatschappij verandert voortdurend en alsmaar sneller. Ontwikkelingen op verschillende domeinen stellen nieuwe eisen aan de maatschappelijke instellingen. Ook aan het onderwijs. Op die uitdagingen geeft dit leerplan 'Wiskunde' een eigentijds antwoord. Daartoe legt het een aantal eigen, nieuwe accenten. Die blijken uit de vragen waarvan het leerplan uitgaat.

Zo is er de vraag: "Wat gebeurt er bij iemand die een situatie wiskundig benadert?"
Als antwoord beschrijft het leerplan dat proces. Dat proces bestaat uit: de situatie analyseren, een wiskundig model opbouwen/kiezen, wiskundige technieken toepassen en de resultaten interpreteren en controleren.

Er dringt zich een tweede vraag op: "Welke kennis, inzichten, vaardigheden en attitudes dienen kinderen te verwerven en te integreren om een situatie wiskundig te kunnen benaderen?" Het antwoord vindt de lezer in de algemene doelen van wiskundeonderwijs en in de doelen per leerdomein.

Een derde vraag luidt: "Hoe organiseren leerkrachten wiskundeonderwijs?" In de krachtlijnen wordt beschreven hoe een leerkracht en een team het wiskundeonderwijs het best aanpakt. Daar het hier enkel om krachtlijnen gaat, blijft er heel wat ruimte over voor een leerkracht en een team om dat concreet in te vullen.

Dit leerplan is geschreven met zorg voor herkenbaarheid.
In de eerste plaats in zijn gedachtegoed. De lezer zal merken dat waardevolle elementen uit het verleden hun plaats behouden of geherwaardeerd worden.
In de tweede plaats zal hij de structuur van de andere leerplannen herkennen.

Er is ook aandacht voor de bruikbaarheid. Er worden twee documenten aangeboden.

Het leerplan 'Wiskunde' richt zich tot alle leerkrachten van het katholiek basisonderwijs.
De 'Toelichtingen bij het leerplan wiskunde' geven meer suggesties en voorbeelden voor de aanpak van wiskunde in de klas en in de school. Ze illustreren de nieuwe visie.

Kerngroep, leerplancommissie, leesgroep

Hier past een bijzonder woord van dank aan alle leden van de kerngroep, van de leerplancommissie en van de leesgroep.
Het leerplan wiskunde is het resultaat van een intense samenwerking van vele deskundigen in een open dialoog.
B. Pletinck mei 1998 secretaris-generaal VVKBaO

1 NAAR EEN NIEUW LEERPLAN VOOR HET LEERGEBIED WISKUNDE

Ontwikkelingen op technologisch en economisch gebied

Ontwikkelingen

 binnen de psychologie en de (vak)didactiekOnze maatschappij verandert voortdurend en alsmaar sneller. Ontwikkelingen op verschillende domeinen stellen nieuwe eisen aan de maatschappelijke instellingen. Ook aan het onderwijs.

Zo zijn er de snelle ontwikkelingen op technologisch, economisch en wetenschappelijk gebied. Door die kennisexplosie wordt het belangrijker dan vroeger dat kinderen over algemene vaardigheden beschikken. Onder meer vaardigheden om problemen op te lossen en om informatie te verzamelen en te verwerken, en om ze kritisch te beoordelen. Daarom legt dit leerplan de klemtoon op (leren) probleemoplossend en realiteitsbetrokken denken en op het kritisch omspringen met wiskundige gegevens. Wetenschap en techniek hebben er eveneens toe geleid dat ook het gebruik van de zakrekenmachine en de computer een plaats krijgen.

Ook binnen de psychologie en de (vak)didactiek deden er zich de voorbije decennia belangrijke ontwikkelingen voor of zijn accenten verschoven. Die leiden ertoe dat inhoud en vormgeving van het wiskundeonderwijs in het basisonderwijs mee evolueren.

Een paar voorbeelden:
Leerpsychologen en didactici wijzen nadrukkelijk op de actieve inbreng van de kinderen en op het grote belang van het inzichtelijk en probleemoplossend leren, van vaardigheden om het eigen leerproces te sturen (metacognitieve vaardigheden) en van positieve attitudes tegenover wiskunde.

Voor het basisonderwijs beklemtonen didactici het realiteitsbetrokken karakter van wiskundeonderwijs. Dat leidt er bijvoorbeeld toe dat het wiskundeonderwijs meer intuïtief en wereldoriënterend benaderd wordt. In die visie krijgen wiskundige begrippen en eigenschappen een brede onderbouw. Daardoor zullen kinderen ze makkelijker herkennen en hun betekenis beter vatten.
Wiskunde hanteert immers haar eigen taal. Ze omschrijft haar begrippen en eigenschappen in een geformaliseerde taal. Denk maar aan formules, aan het metriek stelsel enz. De wiskundetaal in het basisonderwijs dient daarom nauw aan te sluiten bij de taal van de kinderen en eerder beperkt te blijven. De omschrijving van begrippen en eigenschappen in een geformaliseerde taal wordt dus uitgesteld of wordt meer geleidelijk verworven. Een brede betekenisgeving krijgt de voorkeur.
Daarom is een al te vroege inbreng van een hooggrijpende verza-melingen- en relatieleer niet aangewezen. Het is evident dat wiskundige objecten nog steeds 'verzameld' worden (bijv. veelvouden, veelhoeken) en dat relaties (of verbanden) tussen wiskundige objecten aan bod komen (bijv. is gelijk aan, is groter dan, is deler van, is even-

Waardevolle elementen uit het verleden

Grotere aandacht voor zorgverbreding

Ontwikkelingsdoelen en eindtermen
wijdig met, is symmetrisch). Voorstellingen uit de verzamelingen- en relatieleer worden enkel gebruikt waar ze doelmatig zijn en verduidelijking brengen.
Vroeger was het logisch denken sterk gekoppeld aan de verzamelingenen relatieleer. In dit leerplan wordt het logisch denken ontwikkeld samen met en door de uitbouw van wiskundige begrippen in alle wiskundige leerdomeinen, zowel in het kleuteronderwijs als in het lager onderwijs. Die onderdelen worden dan ook niet meer als leerinhouden in het leerplan van het basisonderwijs opgenomen.

Dit leerplan sluit uitdrukkelijk aan bij die nieuwe inzichten uit de psychologie en de (vak)didactiek. Maar het gaat niet enkel om nieuwe inzichten. Dit leerplan herwaardeert en actualiseert ook de waardevolle elementen uit het verleden. Bijvoorbeeld leerinhouden goed structureren, inoefenen en automatiseren.

Ook de toegenomen aandacht voor zorgverbreding vergt dat leerinhouden en methodiek aangepast worden. Het opvoedingsconcept van het katholiek basisonderwijs schuift de zorg voor de 'zwaksten' al lang als een evangelische opdracht naar voren (zie 'Opdrachten voor een eigentijdse katholieke basisschool').
Daarom spitsen we het leerplan toe op wiskundige vaardigheden die alle kinderen van het basisonderwijs moeten nastreven en/of bereiken. We besteden bovendien aandacht aan een geleidelijke en zorgvuldige opbouw. Daardoor kunnen leermoeilijkheden worden voorkomen en komt er meer ruimte voor remediëring

Ten slotte zijn er de ontwikkelingsdoelen en eindtermen voor het leergebied wiskunde die door de Vlaamse Raad bij decreet zijn vastgelegd. Ze zijn in dit leerplan herkenbaar en met verwijzing naar de decretale nummering verwerkt. De school die met dit leerplan werkt en het nauwgezet volgt, levert ongetwijfeld voldoende inspanning om de ontwikkelingsdoelen en eindtermen na te streven en/of te bereiken.

Tegen de achtergrond van al die ontwikkelingen drong een vernieuwd leerplan zich op. Dit leerplan breekt niet volledig met het vorige, maar brengt wel enkele accentverschuivingen aan.

2 DE WAARDE VAN WISKUNDE IN HET BASISONDERWIJS

2.1 Praktische en matschappelijke wandde

Wiskundig gevormde mensen

In het basisonderwijs

In verdere schoolloopbaan en beroepsarbeid

Onze maatschappij heeft behoefte aan wiskundig gevormde mensen. Wiskunde speelt immers een belangrijke rol: in het dagelijkse leven, in wetenschappen en techniek, in handel en economie, in statistische verwerking en in maatschappelijke beslissingen. Om in de huidige maatschappij te functioneren moeten mensen in voldoende mate over een elementaire wiskundige bagage beschikken.

Het basisonderwijs moet kinderen daarop voorbereiden. Daarbij gaat het in de eerste plaats over wiskundige vaardigheden die iedereen moet beheersen om in het leven van elke dag eenvoudige en praktische problemen aan te kunnen.

Het secundair onderwijs bouwt die basisvaardigheden na het lager onderwijs verder uit. Nog later hebben kinderen die vaardigheden nodig voor hun beroepsarbeid.

2.2 Vormende wairde

Verstandelijke ontwikkeling

Dynamisch-affectieve en sociale ontwikkeling

Wiskunde heeft niet alleen praktisch en matschappelijk nut. Ze helpt ook de totale persoonlijkheid van kinderen te ontwikkelen. Wiskunde heeft een vormende waarde.

Wiskunde beoefenen bevordert de verstandelijke (cognitieve) ontwikkeling. Daarbij gaat het om meer dan het leren van begrippen, symbolen, procedures enz. Zeker bij wiskunde moeten kinderen problemen systematisch en verstandig leren aanpakken en oplossen. Ze moeten leren nadenken (reflecteren) over de gehanteerde oplossingswijzen. En ze moeten hun denken leren sturen. Die vaardigheden kunnen ze aanwenden buiten het leergebied wiskunde (transfer).
De verstandelijke ontwikkeling wordt al van in het kleuteronderwijs gestimuleerd onder meer in wiskundige initiatie. Denk maar aan kleuters die hoeveelheidsbegrippen en vormeigenschappen ontdekken als ze voorwerpen exploreren en ermee experimenteren.

Wiskundige vorming draagt op verschillende manieren bij tot de dyna-misch-affectieve ontwikkeling van kinderen.
Zo geven wiskundige kennis en inzicht kinderen vertrouwen in hun eigen mogelijkheden. Bovendien helpt wiskunde attitudes ontwikkelen. Denk maar aan nauwkeurigheid, orde, zich helder uitdrukken, zin voor afwerking, gerichtheid op efficiëntie, doorzettingsvermogen enz. Verder kunnen volgehouden inspanningen om wiskunde te leren voldoening schenken.
Wiskunde beoefenen heeft ook een sociale betekenis. Bijvoorbeeld als kinderen argumenteren, verschillende aanpakken vergelijken en waarderen, als ze samenwerken.

Psycho-motorische ontwikkeling

Ten slotte ontwikkelen kinderen die met wiskunde actief bezig zijn, zich ook op psycho-motorisch vlak.
Denk maar aan bewegingsspelen in het kleuteronderwijs waardoor kleuters zich onder meer leren oriënteren in de ruimte. Of aan constructies in het kleuter- en lager onderwijs. De kinderen ontdekken hoe een zintuiglijke en motorische verkenning van de werkelijkheid de oplossing van wiskundige problemen dichterbij kan brengen.

2.3 Opbouwende waarde

Wiskunde in het basisonderwijs heeft een opbouwende waarde.

Van kleuteronderwijs, over lager, naar secundair onderwijs

Verticale planning

Horizontale samenhang
Van in het kleuteronderwijs wordt het wiskundig denken bij kinderen gestimuleerd. Het lager onderwijs bouwt verder op de kennis, inzichten, vaardigheden en attitudes die kleuters bij de wiskundige initiatie hebben ontwikkeld en breidt ze uit. Daarna stromen alle kinderen door naar éen of andere vorm van secundair onderwijs. Daar staat wiskunde altijd, zij het in verschillende mate en op verschillend niveau, op het programma. Wiskunde in het secundair onderwijs bouwt op zijn beurt verder op wat kinderen verworven hebben in het lager onderwijs. En dat verschilt nogal van kind tot kind.

Om die doorstroming zo vlot mogelijk te laten verlopen, moeten de leeren vormingsinhouden verticaal - binnen en over de onderwijsniveaus goed gepland worden: vanuit het kleuteronderwijs, door het lager onderwijs heen naar het secundair onderwijs toe. Zo komt het dat dit nieuwe leerplan voor het basisonderwijs tot stand gekomen is in overleg met de commissie voor het vormingsplan voor het kleuteronderwijs en met de leerplancommissie voor de eerste graad van het secundair onderwijs.

Wiskunde ondersteunt ook de andere leergebieden. Zo gebruiken kleuters ruimtelijke begrippen wanneer ze na een uitstap een buurt beschrijven. In het lager onderwijs gebruiken kinderen hun wiskundige kennis en vaardigheden als ze bijvoorbeeld bij wereldoriëntatie de afstand tussen twee steden of tijdsverschillen berekenen.

2.4 Culturele waarde

Historisch karakter en logische opbouw

Wiskunde heeft ten slotte een culturele waarde.
Ze behoort tot ons cultuurpatrimonium. In geen enkele wetenschap vallen theorieën, stellingen en regels zomaar uit de lucht. Wetmatigheden werden onder meer ontdekt door herhaaldelijk gelijkenissen en verschillen te constateren. De manier waarop kinderen wiskunde leren, vertoont gelijkenissen met de evolutie van wiskunde als wetenschap. Het is dan ook zinvol kinderen dat ontstaansproces van rekenregels en strategieën te laten ervaren. Bij kinderen van het lager onderwijs kunnen we geleidelijk belangstelling en bewondering wekken voor het historische karakter en de logische en gestructureerde opbouw van de wiskunde.

3 WISKUNDIGE ACTIVITEIT IN HET BASISONDERWIJS

Leefwereld begrijpen, beschrijven, verklaren en beheersen

Situatie analyseren

Een wiskundig model kiezen/ontwikkelen

Wiskundige technieken toepassen

Resultaten controleren en interpreteren

Wiskunde levert een aantal middelen om verschijnselen uit onze leefwereld te begrijpen, te beschrijven, te verklaren en te beheersen. In hun professioneel en dagelijks leven gebruiken volwassenen veelvuldig die wiskundige middelen. Kinderen komen van jongsaf aan voortdurend in situaties terecht die ze wiskundig kunnen of moeten doorgronden.

Bekijken we even welke activiteiten iemand ontplooit als hij in de realiteit een situatie wiskundig benadert. De opeenvolging van de activiteiten kan verschillen volgens de situatie.

Wie een situatie wiskundig benadert, moet ze eerst analyseren. Hij probeert zich de essentiële elementen en relaties uit de situatie voor te stellen.

Als kleuters bijvoorbeeld schatten of drie voorwerpen in een doos passen, richten ze hun aandacht vooral op de afmetingen van de voorwerpen en van die doos. Om in het lager onderwijs een vraagstuk op te lossen, moeten kinderen onder meer eerst nagaan wat er gevraagd wordt en wat er gegeven is.

Daarna wordt een wiskundig model gekozen of ontwikkeld waarin die essentiële elementen en relaties op een passende wijze vervat zijn.

Zo'n wiskundig model is bijvoorbeeld het metriek stelsel of de plaatswaarde in ons talstelsel. Maar het kan ook gaan om minder ingewikkelde zaken, zoals de telrij (bijv. om een hoeveelheid te bepalen), een rekenkundige bewerking (bijv. samenvoegen kan worden vertaald in een optelling), een meetkundige formule (oppervlakte rechthoek $=1 \times b$), enz.

Éénmaal iemand het wiskundig model gekozen of ontwikkeld heeft, past hij binnen dat model allerlei wiskundige technieken toe: doortellen, cijferen, meten, construeren... Die technieken leiden tot eén of meer resultaten zoals een hoeveelheidsaanduiding, een som, een maat of een figuur.

Zo gaan twee kleuters bijvoorbeeld met de rug tegen elkaar staan om hun lengte te vergelijken. In het lager onderwijs vergelijken de kinderen de lengte van twee lijnstukken bijvoorbeeld nadat ze die gemeten hebben tot op 1 mm nauwkeurig.

Ten slotte worden de resultaten op verschillende manieren gecontroleerd (bijv.: Heb ik het juiste model gebruikt, maakte ik geen fout bij de berekeningen?) en geïnterpreteerd (bijv.: Een betekenis aan het resultaat geven. Is dat resultaat mogelijk in de gegeven situatie?).

Een kleuter krijgt vier snoepjes. Hij wil ze eerlijk delen met zijn vriendje. Hij zegt dat ze er elk twee krijgen. Zijn verdeling in gedachte controleert hij door de verdeling met voorwerpen uit te voeren. Bij een vraagstuk heeft een kind als resultaat van zijn berekeningen dat de omtrek van een klas 8 km is. Het maakt
gebruik van referentiematen en komt tot het besluit dat het resultaat zeker fout is.

Schematisch kunnen die activiteiten zo worden weergegeven.

Situaties een wiskundige vorm geven

Inzicht verwerven
in het wiskundig systeem

Kinderen moeten leren situaties 'een wiskundige vorm te geven'. Dat wil zeggen dat ze situaties die nog niet in wiskundetaal gesteld zijn, binnen de wiskunde halen. Daarvoor moeten ze wiskundige modellen kennen.

Dat betekent onder meer dat ze de situatie moeten leren onderzoeken, analyseren, schematiseren, hypothesen formuleren.
Kinderen moeten hun kennis in reële toepassingssituaties leren gebruiken. Omgekeerd moeten ze hun resultaat terug kunnen plaatsen in de oorspronkelijke situatie. Dat houdt onder meer in dat ze hun resultaat controleren en interpreteren.

De activiteiten bij die twee bewegingen (van de situatie naar de wiskunde en omgekeerd) bevinden zich vooral in de linkerhelft van het schema hierboven. Ze zijn slechts mogelijk wanneer de wiskundige kennis voldoende breed onderbouwd is.

Wanneer mensen wiskunde beoefenen, gebruiken ze het wiskundig systeem. Daartoe behoren begrippen, symbolen, afspraken, formules, procedures, wetten, regels en verbanden.
In het lager onderwijs moeten kinderen enig zicht krijgen op de samenhang van dat wiskundig systeem en moeten ze er vaardig mee leren omgaan. Daartoe moeten ze ervaringen opdoen met allerlei wiskundige denkactiviteiten binnen dat systeem. Denk maar aan selecteren, ordenen, verbanden leggen, abstraheren, formuleren, berekenen, schatten, kennis organiseren, verklaren, verantwoorden en reflecteren. Die activiteiten bevinden zich vooral in de rechterhelft van het schema hierboven.

4 WISKUNDIGE INITIATIE IN HET KLEUTERONDERWIJS

Een eigen invulling

 en een andere aanpakEen veelzijdige oriëntatie

Geïntegreerde initiatie

De ontwikkeling van wiskundige begrippen en vaardigheden stimuleren

Begrippen uitdiepen of vaardigheden oefenen

In het vorige hoofdstuk werd beschreven hoe iemand een situatie wiskundig benadert: een situatie analyseren, een wiskundig model kiezen/ontwikkelen, wiskundige technieken toepassen, de resultaten controleren en interpreteren. Die activiteiten gelden voor alle kinderen in het basisonderwijs.
Kleuters benaderen situaties ook wiskundig en ze doen dat op een eigen wijze. Daardoor krijgen de beschreven activiteiten een eigen invulling. Die vraagt om een andere aanpak dan in het lager onderwijs. In het kleuteronderwijs gaat het over wiskundige initiatie. Daarop wordt hieronder ingegaan.

Kleuters oriënteren zich in de wereld op een veelzijdige manier. Daarbij komen ook wiskundige begrippen aan de orde.
Als kinderen ervaringen opdoen in de keuken of in de winkel, als ze met blokken en puzzels iets construeren of een rollenspel spelen, als ze meten of hoeveelheden schatten, als ze relaties leggen... duiken vragen op als hoeveel, hoe groot, waar, hoe lang, wat eerst...
In de dagelijkse communicatie in en buiten de klas vangt het kind terloops veel termen op die te maken hebben met tijd, ruimte, hoeveelheid, maat enz. Als ouders en leerkrachten hier gepast op inspelen, stimuleren ze zowel de behoefte aan telvaardigheid als het daadwerkelijk leren tellen.
Zo ontstaat de voedingsbodem voor wiskundige interesses en vaardigheden. Daarom organiseert het kleuteronderwijs voor alle kinderen situaties en activiteiten die de behoefte aan wiskundige ontdekkingen uitlokken en het leren van wiskundige vaardigheden ondersteunen.

In het kleuteronderwijs gaat het enkel om een initiatie in wiskundige begrippen en vaardigheden en niet om wiskundeonderwijs als een afzonderlijk leergebied. Daarom komt de wiskundige initiatie veelal geïntegreerd voor.
Bijvoorbeeld tijdens activiteiten waarin kinderen motorisch bezig zijn als ze iets construeren. Of waarin ze bewegen in de ruimte (zie leerplan 'Bewegingsopvoeding'). Of tijdens allerhande (rollen)spelsituaties, uitstapjes, situaties waarin de leidster afspraken maakt met kinderen, enz.

Bij het selecteren van de activiteiten of leersituaties dient de leerkracht in de eerste plaats rekening te houden met de betekenis die kinderen zelf aan de activiteiten hechten. Maar tegelijk kan zij hierbij de ontwikkeling van wiskundige begrippen en vaardigheden uitdrukkelijk stimuleren. De leerkracht kan bijvoorbeeld bij het winkelspel vragen naar hoeveelheden. Dat is een functionele activiteit.

Naast die functionele activiteiten, zijn er ook structurerende momenten nodig. Daarbij trekt de leerkracht meer tijd uit om begrippen uit te diepen of vaardigheden in te oefenen. Zo kan een actieve tel- of meetoefening als doel op zich ook voor kleuters een betekenisvolle en boeiende activiteit worden. En naast termen die kleuters incidenteel oppikken, biedt de leerkracht op het gepaste moment ook bepaalde termen meer gericht aan. Ze organiseert het evenwel zo dat de activiteit boeiend blijft voor kleuters.

Initiatie en structurering op maat van de kleuter

Handelingsmogelijkheden vergroten

Leerplan, vormingsplan en toelichtingen

Het tempo, de leeftijd en de mogelijkheden van de kleuters bepalen de mate van initiatie en van structurering. Activiteiten die gericht zijn op wiskundige initiatie, komen veel minder aan bod bij de jongere kleuters dan bij de oudere. Oudere kleuters kunnen meer intentionele en geplande activiteiten aan. Dan groeien hun vaardigheid en motivatie zodat ze de meer systematische aanpak van het lager onderwijs aankunnen.

Als kleuters wiskundige begrippen en vaardigheden verwerven, vergroten ze hun handelingsmogelijkheden. Die begrippen en vaardigheden zijn een beperkt - maar tegelijk belangrijk - onderdeel van hun veelzijdige ontwikkeling. Zo helpen ruimtebegrippen het kind zich ruimtelijk te situeren. Tijdsbegrippen vergemakkelijken de uitbouw van een tijdsperspectief vergemakkelijken. De kleuters die thuis minder kansen tot wiskundige initiatie krijgen of die minder verstandelijke mogelijkheden hebben, krijgen in het kleuteronderwijs extra kansen en worden meer intentioneel geobserveerd en begeleid. Dat betekent dat de leerkracht haar aanbod van wiskundige initiatie extra structureert om het kind te helpen de nodige kennis en vaardigheden op te bouwen.

Het leerplan wil de kieuterleid(st)ers helpen door per leerdomein een lijst van doelen in een leerlijn op te nemen. De leerplancommissie sluit zich aan bij meer recente visies op het ontstaan van het getalbegrip, het meetbegrip en de meetkundige oriëntatie. Daarom worden de rekenvoorwaarden zoals Piaget ze beschreef, niet uitdrukkelijk vermeld.
Meer specifiek worden didactische tips opgenomen in het vormingsplan (vooral in het domein denkontwikkeling) en in de toelichtingen bij het leerplan.

5 Aspecten van de beginsituatie

Individuele verschillen

Verstandelijke, motorische en sociaal-emotionele factoren

Situatie 'thuis'

Schoolse ervaringen

Kinderen met problemen bij wiskunde

De individuele mogelijkheden en de prestaties van kinderen verschillen sterk van elkaar. Ook als ze wiskunde leren.
Zo zijn er grote verschillen in de telvaardigheden van kleuters. En bij de aanvang van het eerste leerjaar zijn er kinderen die sommige elementaire rekenvaardigheden al beheersen. Zo kunnen sommige kinderen al de som maken van het aantal ogen dat ze gegooid hebben met twee dobbelstenen. Andere kunnen hun snoep eerlijk verdelen onder hun vrienden. In de hogere leerjaren zijn de verschillen tussen kinderen meestal nog groter.
Wie kinderen begeleidt in hun wiskundige ontwikkeling, houdt rekening met die verschillen. Daarom schat een leerkracht de mogelijkheden en de prestaties van elk kind nauwkeurig in.

Die verschillen in de mogelijkheden en prestaties van kinderen worden door een hele reeks factoren bepaald.

Vooreerst zijn er hun verstandelijke capaciteiten. Verder wordt er dikwijls een verband gelegd tussen de motorische ontwikkeling van kinderen en hun mogelijkheden om wiskunde te leren. Bovendien bepalen sociaal-emotionele factoren mee de wiskundige prestaties van kinderen. Zo zijn er onder meer de opvattingen van kinderen over wiskunde en is er ook hun werkhouding. Zo zijn sommige kinderen faalangstig of hebben concentratieproblemen.

Ook de situatie 'thuis' is niet zonder belang voor de schoolse prestaties van kinderen. Denk maar aan de rijkdom aan ervaringen die kinderen met verantwoord spelmateriaal thuis kunnen opdoen. Of aan de belangstelling van ouders en opvoeders, en aan de harmonie in de thuissituatie. De situatie van kinderen uit kansarme gezinnen verdient bijzondere aandacht.

Ook schoolse ervaringen beïnvloeden de wiskundige prestaties van kinderen: hun succeservaringen of het gebrek daaraan, de wijze waarop leerkrachten met hen omgingen en omgaan, de samenstelling van de huidige en de vorige klasgroepen, hun schoolloopbaan enz.

Kinderen met problemen bij wiskunde tref je in elke klas aan. Sommige hebben een probleem op één welbepaald leerdomein. Andere kinderen zijn zwak over bijna heel de linie. Die kinderen kunnen bijvoorbeeld goed presteren voor taal, maar afhaken voor wiskunde.
Het is belangrijk dat leerkrachten daar enig begrip van hebben. De eerste diagnose ligt immers in hun handen. Hun inzichten zijn beslissend voor de te volgen weg.

Een vertraagde taalontwikkeling remt de schoolse vorderingen op heel wat gebieden, ook bij wiskunde. Taal is immers een kruiwagen voor ons denken. Ze speelt een essentiële rol bij de ontwikkeling van begrippen en bij het inzicht in de verbanden tussen begrippen, bij het vatten van mondelinge boodschappen of bij het begrijpen van geschreven instructies of vraagstukken.

Daarom is het begrijpelijk dat kinderen uit Nederlandsonkundige (bijv. allochtonen) of taalarme milieus ook bij wiskunde problemen kunnen hebben. Voor hen kan de taaldrempel te hoog zijn.

Algemeen wordt aangenomen dat kinderen die aan bepaalde rekenvoorwaarden voldoen, gemakkelijker wiskunde leren. Maar als ze aan die voorwaarden voldoen, garandeert dat nog niet dat ze zomaar vaardige rekenaars worden. Dat betekent dan ook weer niet dat de leerkracht voor rekenvoorwaarden geen plaats hoeft in te ruimen bij wiskundige activiteiten.
Rekenvoorwaarden zijn geen eisen waaraan noodzakelijk voldaan moet worden om met wiskunde te kunnen starten. Maar ze dienen aan te sluiten bij de processen die al aan de gang zijn.

6 De Algemene doelen
 EN HET STREEFDOEL VAN WISKUNDEONDERWIJS

Algemene doelen bepalen richting en criteria

Algemene doelen voortdurend nastreven

Via zinvolle en veelzijdige activiteiten zoals beschreven in hoofdstuk 3, worden algemene doelen nagestreefd. Die zijn altijd richtinggevend voor de wiskundige activiteiten die de leerkracht organiseert. Algemene doelen vormen de criteria voor de keuze van specifieke doelen en activiteiten. Dat zal blijken uit de beschrijving van de verschillende leerdomeinen voor wiskundige initiatie en wiskunde.

Algemene doelen streeft de leerkracht voortdurend na.
Natuurlijk is het niet zo dat de leerkracht bij iedere activiteit of elke les alle algemene doelen kan betrekken. Maar bij een geheel van activiteiten of lessen moet dat wel het geval zijn.
Verder worden die doelen over een langere periode bereikt. Van in het kleuteronderwijs geeft de leerkracht belangrijke aanzetten door kleuters kansen te geven fundamentele ervaringen op te doen met wiskundige oriëntatie en initiatie.
Veelal zijn die algemene doelen van wiskundeonderwijs geïntegreerd in meer algemene doelen van het basisonderwijs zoals denkontwikkeling en attitudevorming.

6.1 ALGEMENE DOELEN VOOR WISKUNDEONDERWIJS IN HET BASISONDERWIJS

Zes algemene doelen
Eerst worden de zes algemene doelen hieronder opgesomd. Daarna wordt bij elk algemeen doel aangeduid wat het onder meer inhoudt.

Fundamentele wiskundige kennis, inzichten en vaardigheden verwerven

- Wiskundige kennis, inzichten en vaardigheden in verband brengen met en gebruiken in betekenisvolle situaties, ook in andere leergebieden en buiten de school
- De nodige wiskundetaal begrijpen en gebruiken, zowel in de wiskundeactiviteiten en -lessen als daarbuiten
- Een onderzoeksgerichte ingesteldheid ontwikkelen
- Zoekstrategieën (heuristieken) ontwikkelen om (wiskundige) problemen op te lossen en de vaardigheid verwerven om na te denken over eigen (wiskundige) denk- en leerprocessen en om die te sturen
- Een juiste opvatting over en waardevolle houdingen bij wiskunde verwerven

AD1 FUNDAMENTELE WISKUNDIGE KENNIS, INZICHTEN EN VAARDIGHEDEN VERWERVEN

Dat houdt onder meer in:
a) Symbolen, begrippen, wetten en regels, conventies, formules... begrijpen en adequaat gebruiken
b) Samenhangen ontdekken binnen het leergebied wiskunde
c) Wiskundige vaardigheden (meetvaardigheden, rekenvaardigheden...), technieken, procedures... verwerven
d) Een aantal fundamentele denkvaardigheden ontwikkelen, zoals selecteren, ordenen, verbanden leggen, abstraheren, expliciteren, verklaren
ad2 Wiskundige kennis, inzichten en vaardigheden in verband bRENGEN MET EN GEBRUIKEN IN BETEKENISVOLLE SITUATIES, OOK IN ANDERE LEERGEBIEDEN EN BUITEN DE SCHOOL

Dat houdt onder meer in:
a) Met de geleerde wiskundige begrippen, inzichten, regels, procedures, enz. efficiënt omgaan in reële, betekenisvolle toepassingssituaties, zowel in de school als daarbuiten
b) Zelf concrete voorbeelden van zinvolle situaties geven die betekenis verlenen aan of model staan voor een bepaalde wiskundige notatie, regel of procedure
c) Een passende keuze maken uit verschillende soorten van procedures (bijv. hoofdrekenen of cijferen of werken met de zakrekenmachine) waarmee een wiskundig probleem opgelost kan worden
d) Beseffen welke moeilijkheden er (kunnen) rijzen tijdens het omzetten van een situatie in een geschikt wiskundig model en bij het terug vertalen van de resultaten naar de oorspronkelijke situatie

AD3 De nodige wiskundetaal begripen en gebruiken, zowel in de wiskundeactiviteiten en -Lessen als dairbuiten

Dat houdt onder meer in:
a) Zélf de wiskundetaal actief gebruiken om met anderen te communiceren - zowel mondeling als schriftelijk - over wiskundige problemen, ideeën, oplossingswijzen...
b) Wiskundige beschrijvingen onder de vorm van formules, tabellen, grafieken... in bijvoorbeeld kranten, tijdschriften en op tv, lezen en interpreteren
c) Zélf gebruik maken van wiskundige beschrijvings- en ordeningsmiddelen zoals tabellen, pijlen, diagrammen, grafieken, enz. om getalsmatige gegevens en relaties op een heldere en overzichtelijke wijze voor te stellen

Dat blijkt onder meer uit:
a) Orde en regelmaat willen onderzoeken in elementen uit de omgeving (bijv. in kralenkettingen), in figuren, in maten en in getallenreeksen
b) Bereid zijn eigenschappen en wetmatigheden van elementen uit de omgeving, van getallen en bewerkingen, vlakke en ruimtelijke figuren (bijv. balkvormige en bolvormige figuren onderzoeken door ze proberen te rollen) op te sporen en te controleren onder meer door (leer)-activiteiten zoals aanpassen, vooropstellen en toetsen van een hypothese, controleren van een uitspraak, veralgemenen...
ads Zoekstrategieėn (heuristieken) ontwikkelen om (wiskundiGE) PROBLEMEN OP TE LOSSEN EN DE VAARDIGHEID VERWERVEN OM NA TE DENKEN OVER EIGEN (WISKUNDIGE) DENK- EN LEERPROCESSEN EN OM DIE TE STUREN

Dat houdt onder meer in:
a) Zoekstrategieën (of heuristieken) aanwenden om wiskundige opgaven op te lossen, zoals een probleemstelling anders formuleren, het probleem opsplitsen in delen, een schets maken, een schema maken van alle gegevens, een doordachte schatting maken, enz.
b) Nadenken over de eigen (wiskundige) activiteiten en de eigen leeren probleemoplossingsprocessen en die sturen. Bijvoorbeeld door tijdens de uitvoering van het oplossingsplan na te gaan of een bepaalde stap inderdaad iets oplevert of door de gevolgde oplossingsweg en het eindresultaat te controleren.
c) Geschikte en efficiënte strategieën voor het leren van wiskunde kennen en kunnen gebruiken
adg Een juiste opvatting over en waardevolle houdingen bij WISKUNDE VERWERVEN

Dat houdt onder meer in:
a) Beseffen dat wiskundige praktijken van vroeger en nu, en van elders en hier kunnen verschillen
b) Ervaren en beseffen dat eenzelfde probleem op verschillende manieren voorgesteld en verwoord kan worden
c) Beseffen dat wiskundige problemen oplossen geen kwestie is van geluk maar soms heel wat tijd in beslag neemt
d) Beseffen dat wiskunde een praktisch nut, een vormende en soms een esthetische waarde heeft
e) Plezier beleven aan denk- en wiskundige activiteiten
f) Met zelfvertrouwen, zin voor orde, netheid en nauwkeurigheid enz. wiskundige problemen en leertaken aanpakken

6.2 Het streefdoel van wiskundeopvoeding in het basisonderwis

Competentie én ingesteldheid

Opvoedingsproject van een katholieke school

Totale persoonlijkheidsontwikkeling

In samenhang met andere leerplannen en vormingsplan

Het basisonderwijs heeft voor het leergebied wiskunde als streefdoel dat kinderen de nodige competentie (kennis en kunde) én de juiste ingesteldheid tot op zekere hoogte verwerven en integreren.
Daarvoor dient de brede waaier van de algemene doelen voor wiskundeonderwijs in het basisonderwijs nagestreefd te worden.

De doelen en inhouden van dit leerplan zijn een onderdeel van het totale opvoedingsproject van een katholieke school.

Wiskundeonderwijs dat bovenstaande doelen nastreeft, draagt enerzijds bij tot de totale persoonlijkheidsontwikkeling van kinderen. Handen, hoofd en hart zijn erbij betrokken.

Anderzijds moeten die doelen worden nagestreefd in samenhang met het vormingsplan voor het kleuteronderwijs en met de doelen en inhouden van de andere leerplannen.
Zo liggen voor wiskundige initiatie en wiskunde de verbanden voor de hand met wereldoriëntatie (bijv. de leerdomeinen ruimte en tijd, de probleemsituaties uit wereldoriëntatie een wiskundige vorm geven), met moedertaalopvoeding (bijv. symbolen herkennen, taal begrijpen en gebruiken), met bewegingsopvoeding (bijv. oriëntatie in ruimte en tijd), met beeldopvoeding (bijv. grafische taal, omgaan met vormen) en met sociale vaardigheden (bijv. argumenteren, samenwerken). Dat geldt uiteraard voor het leergebiedoverschrijdende leren leren (bijv. problemen leren oplossen) dat in de wiskunde een dankbaar toepassingsgebied vindt.

In zo'n benadering wordt wiskundeonderwijs wiskundeopvoeding.

7 WISkUNDEONDERWIJS DIDACTISCH ORGANISEREN

Een brede waaier van doelstellingen en een passende aanpak

Groot scala van didactische scenario's

In het wiskundeonderwijs moeten kinderen veel soorten van wiskundige kennis, inzichten, vaardigheden, strategieën en attitudes in nauwe samenhang verwerven.
Daartoe dienen leerkrachten hun onderwijs zo aan te pakken en in te richten dat ze bij kinderen de vereiste leerprocessen en motivatie uitlokken en op gang houden om doelmatig de beoogde leerresultaten te bereiken. Dat houdt onder meer in dat zowel leerkrachten als kinderen ervan overtuigd worden dat naast vakinhoudelijke kennis en inzichten, ook vaardigheden, strategieën en attitudes voor beïnvloeding en ontwikkeling vatbaar zijn.

Zulke brede waaier van doelstellingen vereist een groot scala van didactische scenario's.
De leerinhoud en de concrete doelstelling die aan de orde is, speelt daarbij ook een rol. Denk maar aan het verschil in aanpak bij het verwerven van inzicht in de tafels en bij het automatiseren ervan. De wijze waarop de leerkracht de onderwijsleersituatie uitbouwt, is verder afhankelijk van de leeftijd en de ontwikkeling van de kinderen.

Algemeen geldende

 uitgangspuntenBij die verschillende didactische scenario's gelden enkele algemene uitgangspunten voor goed wiskundeonderwijs. We beschrijven ze kort.

7.1 Actieve Leerprocessen stimuleren

Leren is een actief proces

Een dynamische kijk
op onderwijzen

Begeleiding door de leerkracht

Kinderen die wiskunde leren, verwerken wiskundige informatie actief. Ze interpreteren, bewerken en nemen de informatie op in samenhang met hun voorkennis, verwachtingen en behoeften. Uiteraard doen ze daarvoor in hoge mate ook een beroep op informatie die van buitenaf aangeboden wordt. Nieuwe kennis en vaardigheden leren is een actief proces.

Leerkrachten dienen rekening te houden met dat actief karakter van het leren. Er wordt nadruk gelegd op de verantwoordelijkheid en de activiteit(en) van het (lerende) kind. Daardoor krijgt wiskundeonderwijs een dynamisch karakter.

Bij sommige leerprocessen treden leerkrachten ondersteunend op, bij andere sturend. Nog andere leerprocessen in het basisonderwijs verlopen autonoom en zonder sturing of begeleiding van de leerkracht. Een leerkracht hoort te weten wanneer kinderen hun leerproces meer in handen kunnen nemen, wanneer ze als leerkracht beter stimuleert en activeert en wanneer ze moet sturen. Daarbij houdt de leerkracht rekening met de doelstellingen die ze vooropstelt en met de mogelijkheden van de kinderen.

Observeren is een basisvoorwaarde voor een passende ondersteuning. Door te observeren kan de leerkracht de voorkennis, de werkwijzen en de attitudes van de kinderen inschatten. Op grond van die observaties kan ze aanwijzingen, suggesties en feedback (terugkoppeling) geven (bijv. met kleuters terugblikken op spelervaringen). Of de activiteiten en
lessen aanpassen (bijv. het materiaalaanbod in de hoeken aanpassen, planningsgesprekjes inbouwen in de vrije spelsituatie).

Een leerkracht kan op verschillende manieren ondersteunen.

Demonstreren en uitleggen

Helpen

Leergesprekken en reflectie

Transfer

- Zo kan een leerkracht de gewenste denkhandelingen demonstreren en uitleggen, en ze zo doorzichtig maken. Als voorbeeld zet de leerkracht stappen naar de oplossing en verwoordt die.
- Zo kan een leerkracht ook allerlei vormen van hulp aanbieden, rechtstreeks en onrechtstreeks. Denk maar aan kinderen deeltaken laten uitvoeren, suggesties voor de oplossing formuleren, problemen toegankelijk maken door hulpmiddelen aan te reiken, gerichte denkvragen stellen, open vragen stellen om oplossingen uit te lokken, de situatie beschrijven om kinderen aan te zetten tot analyse van de situatie. De leerkracht neemt die aspecten voor haar rekening die het kind nog niet zelfstandig aankan.
- Zo kan een leerkracht leergesprekken opzetten waarin kinderen met elkaar en met de leerkracht overleggen en uitmaken wat goede en minder goede werkwijzen zijn. Op belangrijke knooppunten last ze reflectiemomenten in waardoor kinderen hun niveau van wiskundige kennis en wiskundig handelen verhogen.
- Zo kan een leerkracht kinderen laten ontdekken en ervaren hoe ze begrippen kunnen gebruiken en strategieën aanwenden. Zowel in andere min of meer afwijkende situaties of leergebieden als in situaties buiten de school.

7.2 Aansluiten bij wat kinderen al beheersen

Voorkennis bij elk wiskundeleren

Voorkennis gebruiken

Nieuwe informatie koppelen aan bestaande kennis

Kinderen die wiskunde leren, beschikken over heel wat voorkennis. Die bestaat uit informele kennis, intuïtieve leer- en oplossingsstrategieën, maar ook uit georganiseerde kennis die ze verworven hebben.

De leerkracht moet aansluiten bij wat kinderen al beheersen. Zij maakt dan van die voorkennis gebruik om de beoogde wiskundige inzichten en procedures te ontwikkelen. Doet een leerkracht dat niet, dan bestaat de kans dat de beoogde wiskundige operaties onvoldoende verankerd geraken in de aanwezige kennisstructuur. Kinderen moeten die voorkennis leren gebruiken om nieuwe kennis te verwerven. Daarbij worden ze begeleid door de leerkracht.
Daarom is het zo belangrijk dat een leerkracht kinderen observeert of dat ze een toets afneemt om hun voorkennis goed in te schatten. En dat ze differentiatie inbouwt om rekening te houden met de verschillen tussen kinderen.

Nieuwe informatie moet worden gekoppeld aan wat kinderen al kennen en kunnen. Daardoor krijgt niet enkel wat kinderen opnemen betekenis. De kennis die al aanwezig is, ondergaat daardoor een verandering en wordt beter verankerd.

7.3 KENNIS EN VAARDIGHEDEN STAPSGEWIJS OPBOUWEN

Opbouw van wiskundeonderwijs

Als kinderen overrompeld worden door nieuwe informatie, negeren ze die of nemen die slechts ten dele op. Om dat te vermijden, dient een leerkracht voldoende aandacht te schenken aan de opbouw van haar wiskundeonderwijs. De begrippen en vaardigheden moeten geleidelijk aan worden opgebouwd, zodat kinderen verder kunnen bouwen op de verworven kennis en kunde.

7.4 Betekenisvolle situaties en opgaven aanbieden door heel de LEERGANG HEEN

Betekenisvolle situaties wiskundig vorm geven

Betekenisvolle situaties en opgaven voor het wiskundeleren zijn situaties (spelsituaties, probleemsituaties...) die een wiskundige vorm kunnen krijgen. Dat wil zeggen dat ze aanvankelijk nog niet in wiskundetaal gesteld zijn, maar dat ze binnen wiskunde (in engere zin) gehaald kunnen en moeten worden, vooraleer er wiskundige procedures op toegepast worden. Betekenisvolle situaties en opgaven kunnen variëren van uit-het-leven-gegrepen situaties tot min of meer gepolijste, voorbewerkte situaties.

In het kleuteronderwijs kan dat bijvoorbeeld betekenen dat bij een constructieactiviteit met verschillende soorten houten blokken allerhande wiskundige begrippen aan de orde komen. Denk maar aan de vorm van de blokken en van de toren, het verband tussen de hoogte van de toren en de wijze waarop kleuters de blokken stapelen, de stevigheid (stabiliteit) van de toren en de vorm van de toren...
In het lager onderwijs kan het plaatsen van een zoekertje in de krant allerlei wiskundige vragen en procedures uitlokken. Bijvoorbeeld hoe bereken je de prijs van het zoekertje, wat is de voordeligste manier om het te plaatsen, is de verkoop de prijs van een zoekertje waard, enz.

In een kwaliteitsrijk wiskundeonderwijs spelen betekenisvolle situaties en opgaven altijd een rol. Zowel door heel het basisonderwijs heen, als in de begripsvormende en in de toepassingsfase van een reeks lessen over een bepaald onderwerp (deelleergang).
In het kleuteronderwijs sluiten de begripsvormende en de toepassingsfase dicht op elkaar aan. Zo groeien bij kleuters bijvoorbeeld de begrippen over het vermeerderen en verminderen van hoeveelheden altijd in zeer concrete (toepassings)situaties. Maar ook in het lager onderwijs, waar meer tijd besteed wordt aan wiskundige modellen en technieken, komen betekenisvolle situaties en opgaven niet louter als toepassingen achteraf voor.

Wie een wiskundig begrip of wiskundige techniek slechts aan éen soort van situatie heeft leren koppelen, zal die achteraf vaak niet herkennen en niet vlot kunnen toepassen in andere situaties. Er zit een meerwaarde in een gevarieerd en zorgvuldig gekozen opgavenaanbod in de klas.

7.5 HULPMIDDELEN AANREIKEN

Leren verloopt over verschillende niveaus

Soms onmiddellijk op abstract niveau

Hulpmiddelen om het denken te ondersteunen

Venndiagrammen, relatiepijlen... als hulpmiddelen

Zakrekenmachine en computer

Een doordacht gebruik
van materialen en
voorstellingswijzen

Het leren van kinderen verloopt over verschillende niveaus: van het concrete niveau over allerlei verkortingen naar het abstracte niveau. Zo komt het dat het een hele tijd duurt eer kinderen wiskundige kennis, inzichten en vaardigheden verwerven.

Dat betekent niet dat werken op abstract niveau altijd steunt op voorafgaand werken op concreet niveau. Op een bepaald moment kunnen nieuwe elementen uit het wiskundig werkterrein onmiddellijk op abstract niveau benaderd worden (bijv. de staartdeling met decimale getallen in de deler).

Veel kinderen ondervinden vaak moeilijkheden om de stap te zetten van het handelen (concrete niveau) naar het abstract oplossen van wiskundige situaties. Ze hebben er nog nood aan materialen te bekijken of voorstellingen (pijlen, schema's, denkmodellen, diagrammen, tabellen, symbolen en notatiewijzen) te hanteren. Dat zijn hulpmiddelen die hun denken ondersteunen en ze vormen een houvast bij het verwoorden.

Naast de genoemde hulpmiddelen zijn venndiagrammen, relatiepijlen... interessante middelen om het wiskundig denken van kinderen te ondersteunen. Ze kunnen worden ingeschakeld om wiskundige begrippen te verduidelijken zonder de vormelijke wiskundige taal te gebruiken.

Technologische hulpmiddelen, zoals de zakrekenmachine en de computer, bieden heel wat nieuwe mogelijkheden. De leerkracht kan die op het geschikte moment en op de gepaste wijze integreren in het onderwijsaanbod. Maar dan wel zo dat de unieke mogelijkheden ervan op een functionele, leerpsychologisch en vakdidactisch verantwoorde wijze aangewend worden.

Een overvloed aan leermateriaal en een te grote variëteit aan voorstellingswijzen kunnen de begripsvorming, de verkorting en de verinnerlijking bemoeilijken. Dit leerplan opteert daarom voor een doordacht gebruik van materialen en voorstellingswijzen die de essentiële kenmerken bondig en gestructureerd weergeven en de verinnerlijking ondersteunen.

7.6 NADENKEN OVER WISKUNDIGE ACTIVITEITEN IN INTERACTIEF WISKUNDEONDERWIJS

Nadenken over wiskundige activiteit en ze sturen

Nadenken begeleiden door sociale interactie

Om wiskunde te leren, dienen kinderen kritisch na te denken over (reflecteren) de eigen wiskundige activiteiten (en die van anderen), over de eigen manier van wiskundeleren en over (aspecten van) de wiskundesystematiek. Dan pas leren kinderen geleidelijk hun activiteiten in de gewenste richting te sturen.

Dat nadenken kunnen leerkrachten doeltreffend begeleiden door passend in te grijpen en door de sociale interactie en de samenwerking met klasgenoten te bevorderen.
(Onderwijs)leergesprekken, klassikale uitleg en individueel werk

Interactie en reflectie

De rol van de leerkracht

Kinderen moeten ruimschoots gelegenheid krijgen om ideeën uit te wisselen, om oplossingen en oplossingswegen voor te stellen, ze te vergelijken en met elkaar te bespreken en te beoordelen, om argumenten toe te lichten en te weerleggen. Dat kunnen ze in onderwijsleergesprekken, in leergesprekken en in groepswerk.
Daarnaast kunnen een klassikale uitleg en demonstratie van de leerkracht bijdragen tot reflectie.
Ook zelfstandig, individueel werk kan kinderen kansen geven tot reflectie.

Door interactie komt de leerkracht erachter hoe kinderen denken, welke oplossingsweg ze volgen. Die interactie geeft ze de gelegenheid te reflecteren over hun eigen inzichten, aanpakstrategieën en oplossingsprocedures en die van anderen.

Bij die gedachtewisselingen speelt de leerkracht een onmisbare rol. Zij gaat in op de oplossingen van kinderen, stimuleert ze de eigen inzichten te verwoorden én te verantwoorden, stelt hun oplossingen en inzichten ter discussie, werkt verkortingen en meer handige aanpakstrategieën in de hand, enz. Daardoor verhoogt de leerkracht de kwaliteit van de interactie en zet kinderen aan tot reflectie.

7.7 DIAGNOSTICEREND ONDERWIJZEN

(Reken)problemen voorkomen
(Reken)problemen aanpakken

Een goede didactische aanpak is het beste middel om rekenproblemen te voorkomen. Met het oog op zorgverbreding zal de leerkracht dan ook het leerproces en de resultaten van de kinderen op de voet volgen. Ze gaat dan na of de wiskundige kennis, inzichten, vaardigheden en attitudes voldoende verworven zijn zodat de kinderen een volgende stap kunnen zetten.

Wanneer er toch (reken)problemen opduiken bij kinderen, moet de leerkracht die snel onderkennen, ze verklaren, naar aanknopingspunten zoeken voor de beste hulp, en het effect van die hulp evalueren. Die hulp sluit zeker aan bij het rekenen zelf (bijv. wanneer een kind niet inziet dat bij een splitsing de totale hoeveelheid ongewijzigd blijft, geeft de leerkracht conservatieoefeningen over aantallen). Uit onderzoek blijkt dat training van de basisfuncties (bijv. classificatie, motorische ontwikkeling, visuele discriminatie) over het algemeen weinig of geen effect heeft op de prestaties bij wiskunde.
De vaardigheden die bij dat alles gevraagd worden van de leerkracht, zijn samen te vatten onder het begrip 'diagnosticerend onderwijzen'. Het stelt heel wat eisen aan de leerkracht, zowel op vakinhoudelijk vlak, op diagnostisch vlak en op remediërend vlak.

Diagnosticerend onderwijzen veronderstelt dat de leerkracht niet enkel aandacht heeft voor resultaten. Vooral het handelen van kinderen en de manier waarop ze een opgave oplossen, moet de leerkracht in de gaten houden. Met dat handelen worden niet alleen de zichtbare, uitwendige handelingen bedoeld, maar eveneens de onzichtbare, inwendige denkhandelingen. Zowel de juiste als de foutieve.

Observeren, bevragen en verwoorden

Remediëren en compenseren

De leerkracht kan diagnosticerend onderwijzen als ze goed observeert hoe kinderen te werk gaan. Ze krijgt een beter zicht op die onzichtbare, inwendige denkhandelingen als ze kinderen bevraagt en hun oplossingswijzen laat verwoorden.

Een goede leerkracht geeft diagnosticerend onderwijs. Zij biedt de leerling gericht hulp bijvoorbeeld in de vorm van extra instructie binnen de lessen. Daarnaast is soms nog extra hulp nodig. Het gaat dan om remediërende maatregelen die de klas- en taakleerkracht geven en die erop gericht zijn rekenproblemen van kinderen op te lossen.
Bovendien kan een leerkracht ook compenserende maatregelen nemen. Dat betekent dat het kind hulpmiddelen mag gebruiken of dat zijn sterke punten extra aangewend worden, zodat het toch wat kan opsteken van het wiskundeonderwijs in de klas. Bij dat alles is het noodzakelijk dat de hulp buiten de klas zeer goed afgestemd wordt op wat er in de klas gebeurt, bijvoorbeeld inzake terminologie en werkwijzen.

7.8 Wiskunde en schoolwerkplanning

Krachtlijnen

Leerlijnen en verticale samenhang

Om het leerplan 'Wiskunde' in praktijk te brengen dient een team de krachtlijnen ervan te bestuderen.

Zo kan het onder meer stilstaan bij de algemene doelen voor wiskundeonderwijs (zie 6.1) en nagaan hoe de specifieke leerplandoelen daarmee verband houden.
Het team bekijkt dan zeker ook het wezenlijke van een wiskundig leerproces. Dat is, zoals in hoofdstuk 4 wordt uitgelegd, een proces dat uitgaat van de analyse van een betekenisvolle situatie. Die situatie wordt daarna in een wiskundige vorm gegoten en wiskundig bewerkt. Ten slotte wordt weer aangeknoopt bij de oorspronkelijke situatie. Dat proces vormt de basis voor het didactisch handelen in al zijn concrete verschijningsvormen.

Als alle teamleden zich die krachtlijnen eigen maken, ligt de weg open naar een gelijkgerichte aanpak van wiskunde op school.

De doelenlijst van het leerplan biedt een relatief gesloten kader voor een samenhangend onderwijsaanbod over de verschillende leeftijdsgroepen/leerjaren heen. Dat gesloten karakter heeft te maken met de aard van de leerinhoud, meer bepaald de logische opbouw van het wiskundesysteem. Daardoor mag van de leerkracht worden verwacht dat ze een goed doordachte systematiek inbouwt bij haar wiskundeonderwijs.

Het team dient daarom de leerlijn die in de doelenlijst verwerkt is, goed te begrijpen. Die lijn wordt enerzijds bepaald door de graduele opbouw van het wiskundesysteem zelf. Anderzijds door de eigen wijze waarop kinderen de (wiskunde)wereld benaderen. Denk bijvoorbeeld aan 'Meten en metend rekenen'. Daarbij leren kinderen eerst grootheden vergelijken zonder een maateenheid te gebruiken. Daarna werken ze met een natuurlijke maateenheid, om uiteindelijk te komen tot het meten met standaardmaateenheden.

Leerlijnen geven ook aan op welke niveaus leerlingen doelen moeten bereiken. Die niveaus zijn met de streepjescode aangegeven. Met die

Leerlijnen en openheid

Wiskunde in het lessenrooster

aanduidingen kan het team voor de leerlingen een samenhangend aanbod ontwikkelen.

Het relatief gesloten kader van het leerplan 'wiskunde' mag niet als een gesloten keurslijf worden opgevat. Het leerplan is meer open dan het op het eerste gezicht lijkt.

Om te beginnen kan een team de leerlijn, zoals het leerplan die voorstelt, enigszins aanpassen aan de specifieke beginsituatie van de leerlingen. Het kan bij zijn schoolwerkplanning er bijvoorbeeld voor opteren de aangegeven beheersingsniveaus van bepaalde leergroepen te verlagen en naar een hoger leerjaar te verschuiven.

Vervolgens worden leerplandoelen nooit tot op het concreetste niveau uitgeschreven. Er blijven voor de gebruikers dus altijd nog concrete afspraken te maken over tussenstappen die leerkrachten zullen zetten en over de manier waarop de leerlingen de wiskundige handelingen dienen te verwoorden of uit te voeren. Denk daarbij aan de standaardprocedures bij bewerkingen (doelen 8.10 en 8.13), aan de wijze waarop leerlingen aanvankelijk bewerkingen noteren. Of aan de wijze waarop ze kommagetallen moeten lezen of hulptermen gebruiken.
In elk klas dienen evenwel in verband daarmee dezelfde afspraken gerespecteerd.

Wiskunde kan natuurlijk in allerlei leersituaties opduiken. Maar het ligt voor de hand dat elke leerkracht daarnaast ook systematisch wiskundeonderwijs organiseert.

Daaruit volgt dat een team enerzijds dient na te gaan in welke activiteiten wiskunde verweven zit (de horizontale samenhang). Zo ligt bijvoorbeeld heel wat wiskunde besloten in wereldoriëntatie en in de behandeling van de meeste belangstellingspunten.

Anderzijds zal een team bepalen welke activiteiten het op het rooster moet voorzien om de leerdomeinen van wiskunde systematisch aan te pakken. Het moet met andere woorden de lestijden voor wiskundeactiviteiten vastleggen. De lestijden voor wiskunde bedragen ten minste één vijfde van de totale onderwijstijd.

Die tijd is een algemene raming. Hij zal bij een gedifferentieerde aanpak variëren. Voor leerlingen die problemen hebben met het verwerven van sommige doelen, kan bijvoorbeeld meer tijd worden voorzien. Andere leerlingen verwerven het doelenpakket in minder dan de geraamde tijd. Het team dient met andere woorden in onderling overleg te bepalen hoe het aan zorgverbreding en differentiatie kan doen.

De lessen wiskunde vallen niet noodzakelijk samen met de onderscheiden leerdomeinen binnen wiskunde. Zo komt het dat in zinvolle wiskundeactiviteiten doelen uit verschillende domeinen en uit de domeinoverschrijdende doelen vaak samen voorkomen.

Voor de didactische organisatie of de ondersteuning van het onderwijsleerproces geeft het leerplan de krachtlijnen weer. Een team kan daarmee een doeltreffende aanpak opzetten. Om doeltreffend te zijn, is zo'n
aanpak het best gelijkgericht. Dan is immers de kans het grootst dat een team zijn doelen bereikt.

Een team kiest ook zijn onderwijsmiddelen. Zo kiest het uit het grote aanbod van handboeken die methode, die het sterkst bij de krachtlijnen en de leerlijnen van het leerplan aansluit.

Het team spreekt vervolgens ook af hoe het wiskunde op school evalueert en hoe het erover naar de ouders rapporteert. Bij die evaluatie moet elke leerkracht erop toezien dat ze alle doelen van het leerplan als beoordelingscriterium aanwendt en dat ze niet eenzijdig naar het gemakkelijk meetbare peilt.

Het team maakt ten slotte ook afspraken hoe het de vorderingen van alle leerlingen opvolgt en hoe het de leerlingen met een eenvormig volgsysteem tijdig de gepaste ondersteuning geeft.

De implementatie van het leerplan wiskunde veronderstelt dus nogal wat deskundigheid van het team. Bij zijn schoolwerkplanning dient het dan ook na te gaan hoe het zich het best kan vervolmaken. Die opties legt het dan in zijn nascholingsplan vast.

8 Evaluatie biJ wiskunde

8.1 INLEIDING

Evaluatie en onderwijsopvattingen

Wat is evalueren?

Functies van evaluatie

In dit hoofdstuk worden de krachtlijnen uitgetekend van de evaluatie bij wiskunde. Die krachtlijnen zijn gekleurd door de opvattingen over wiskundeleren en wiskundeonderwijs die aan de grondslag liggen van dit leerplan.

Bij een didactische evaluatie wordt de leerprestatie van de kinderen zo nauwkeurig mogelijk beschreven. Daarna wordt een waardeoordeel uitgesproken over die leerprestaties en worden er beslissingen genomen. Ten slotte wordt daarover gerapporteerd.

Evaluatie neemt om verschillende redenen een belangrijke plaats in het onderwijsleerproces in.

Vooreerst put de leerkracht aanwijzingen uit de evaluatie: over het al of niet verlengen van de instructie, over de hulp (remediëring) die ze kinderen moet geven, over de wijze waarop ze kan differentiëren enz.

Bovendien bespreekt de leerkracht de evaluatiegegevens met de kinderen. Daardoor krijgen ze een beter zicht op hun sterke en zwakke punten en kunnen ze leren uit hun succes en uit hun fouten.

Verder verschaffen de evaluatiegegevens aanduidingen aan de ouders over de leervorderingen van hun kind.

Ten slotte levert een evaluatie van het wiskundeonderwijs ook voor de leerkracht en het schoolteam informatie op over de aanpak in de klas en in de school.

De evaluatie bij wiskunde is ingewikkelder dan ze op het eerste gezicht lijkt.

Wie de wiskundeprestaties van kinderen wil evalueren, moet aandacht hebben voor de ontwikkeling van verschillende soorten van kennis en vaardigheden, en voor attitudes. Kinderen moeten bijvoorbeeld niet alleen algemene redeneer- en probleemoplossingsvaardigheden ontwikkelen, maar ook een positieve houding verwerven tegenover wiskunde.

Bovendien dient de evaluatie bij wiskunde niet enkel om na te gaan of de kinderen al of niet tot het 'juiste' resultaat komen. Minstens even belangrijk is de beschrijving en de beoordeling van de wijze waarop de kinderen tot hun resultaten kwamen. Met andere woorden hoe ze gewerkt hebben en waarom ze zo gewerkt hebben.

Ten slotte zijn er dikwijls verschillende onderdelen van het leergebied wiskunde in het geding. Denk maar aan de rol van getallenkennis bij bewerkingen en aan complexe toepassingsopgaven waarbij elementen uit verscheidene leerdomeinen een rol spelen.

8.2 WISKUNDELEREN EVALUEREN

8.2.1 Evaluatie van het resultaat en de wijze wairop het resultaat WORDT BEREIKT

Productevaluatie

Procesevaluatie

Op school gaat dikwijls veel aandacht naar het resultaat. Evaluatie is daardoor doorgaans sterk productgericht. Dat valt best te begrijpen. Productgerichte evaluatie is makkelijk grijpbaar.

De leerkracht die de leerprocessen van kinderen begeleidt, heeft echter nog andere informatie nodig. Zo is het belangrijk te weten hoe de kinderen tot een bepaalde leerprestatie komen (procesevaluatie). Wie leerprocessen evalueert, wil bijvoorbeeld weten of kinderen gemotiveerd aan de slag zijn, hoe snel ze iets afwerken, of ze inzichtelijk en flexibel werken, welk niveau ze aankunnen, welke probleemoplossende vaardigheden ze aanwenden, enz. Om kinderen te begeleiden in hun leerprocessen dient de leerkracht die informatie tijdens heel het leerproces terug te spelen naar kinderen (feedback).
Om het zo aan te pakken dient een leerkracht informatie te verzamelen en te waarderen.

8.2.2 Informatie verzamelen

Gevarieerde
gegevensverzameling

Gerichtheid op diagnose als basishouding

Factoren die bepalen

hoe informatie
wordt verzameld

Evaluatie begint met het verzamelen van allerlei informatie over de leervorderingen van de kinderen. Dat kan op verschillende manieren. Om een zo volledig mogelijk beeld te krijgen van wat de kinderen weten en kunnen, worden de gegevens het best zo gevarieerd mogelijk verzameld.

Een leerkracht krijgt voortdurend allerlei informatie over de leervorderingen van kinderen.
Bijvoorbeeld als ze kinderen aan het werk ziet of als die over hun aanpak vertellen. Soms verzamelt ze die informatie systematisch en gericht als ze kinderen observeert. En soms verzamelt ze stelselmatig en bewust gegevens met bepaalde toetsen.
Kortom, de leerkracht gaat voortdurend en op verschillende manieren na hoever elk kind gevorderd is. Die gerichtheid op diagnose is een basishouding van elke leerkracht die effectief onderwijs wil organiseren.

Hoe de leerkracht informatie verzamelt en waaraan ze op bepaalde momenten aandacht besteedt, is afhankelijk van verschillende factoren:

- de opvattingen over wiskundeleren en wiskundeonderwijs. In dit leerplan wordt er bijvoorbeeld voor gepleit dat kinderen een band leren zien tussen wiskunde en betekenisvolle situaties. Of kinderen dat verband inzien zal ook geëvalueerd moeten worden.
- wat de leerkracht wil weten. Bijvoorbeeld bij vermenigvuldigen wil de leerkracht weten of de kinderen inzicht verworven hebben in die bewerking, of ze de tafels gememoriseerd hebben, of ze voorbeelden van vermenigvuldigingssituaties kunnen geven ofwel of ze toepassingsopgaven kunnen oplossen.
- de omvang van de doelgroep: de hele klas, bepaalde kinderen, een bepaald kind.
- de diepgang van de informatie: een eerste indruk of het doorgronden van de werkwijze van een kind.
- de kinderen zelf: hun medewerking, de mate waarin ze een individueel onderzoek bedreigend vinden.
- praktische zaken: de vereiste tijd, de uitvoerbaarheid, de beschikbaarheid van de nodige middelen.

Hieronder bespreken we enkele belangrijke methoden om gegevens te verzamelen over de leervorderingen van de kinderen: de observatie, schriftelijke toetsen, mondelinge toetsen en geautomatiseerde toetsen. Het zijn basisvormen die al of niet in combinatie met elkaar of met andere vormen gebruikt kunnen worden.

Observatie tijdens de interactie met de kinderen levert veel informatie op. Bijvoorbeeld tijdens de instructie en door aandachtig te luisteren en te kijken naar kinderen die individueel of in groepjes aan het werk zijn. Het leergesprek achteraf verschaft interessante informatie over de manier van werken. Bijvoorbeeld over de verschillende berekeningswijzen of over de oplossingsweg.

Observeren is een basishouding van een leerkracht die tijdens heel het leerproces van kinderen informatie verzamelt. Die informatie stuurt mee haar verdere aanpak. Ze merkt bijvoorbeeld dat bepaalde kinderen de leerstof voldoende beheersen en er dus geen aanschouwelijke ondersteuning meer nodig is, terwijl anderen die wel nog nodig hebben.

De volgende vragen helpen leerkrachten al een heel eind op weg bij een gerichte observatie.

- Zijn kinderen voldoende gemotiveerd?
- Welke kinderen volgen tijdens de instructie?
- Beschikken ze over voldoende vaardigheden om de taak aan te pakken?
- Welke passen ze vlot en systematisch toe?
- Hoe steken ze van wal?
- Hoe gaan de kinderen te werk?
- Werken ze een oplossingsplan uit?
- Waarom doen die kinderen het zo?
- Welke andere ideeën krijgen ze tijdens het werk? Hoe zou dat komen volgens hen? Wat doen ze met die nieuwe ideeën?
- Hoe sturen ze hun werkwijze bij als ze naar een oplossing zoeken?
- Waar twijfelen ze of waar lopen ze vast? Wat is hun probleem en hoe lossen ze dat op?
- Wat vinden die kinderen makkelijk of moeilijk en waarom?
- In welke mate vragen ze hulp en werken ze samen met iemand anders?
- Hoe controleren ze hun antwoord?

Schriftelijke toetsen
Schriftelijke toetsen bieden het grote voordeel dat de leerkracht in één keer gegevens kan verzamelen van al de kinderen van haar klas. Afhankelijk van onder meer de soort toetsopgaven, van de wijze waarop de toets is opgebouwd, van de eisen die de leerkracht stelt (bijv. tempo) en van de analyse van de toetsresultaten kunnen schriftelijke toetsen heel wat waardevolle informatie verschaffen.

Mondeling bevragen

Computerondersteund evalueren

Volgende suggesties helpen de leerkracht meer informatie te puren uit een toets.

- De leerkracht kan de kinderen naast hun resultaat ook hun tekeningen, berekeningen, losse getallen, enz. op een blad laten noteren. Dat geeft er enig zicht op hoe ze te werk zijn gegaan.
- Om te weten hoever de kennis en de vaardigheden van de kinderen reiken, kan een leerkracht hun de opdracht geven zelf een opgave te bedenken (bijv. Noteer een gemakkelijke en een moeilijke bewerking en reken ze uit.).
- De leerkracht kan de kinderen uit een aantal opgaven laten kiezen.
- Kinderen reageren soms verschillend als ze een bepaalde opgave op twee verschillende manieren aangeboden krijgen: in een betekenisvolle situatie en als kale opgave. Dat kan informatie leveren aan de leerkracht.
- Uit opgaven met meer dan één antwoord kan de leerkracht informatie halen over kennis en vaardigheden van de kinderen (bijv. met éen bedrag verschillende voorwerpen kopen).

Een mondelinge bevraging kan extra informatie geven over de aanpak en de werkhouding van de kinderen. Ze vindt vaak individueel plaats en laat een meer diepgaande diagnose toe. Bovendien kan de leerkracht de opgaven aanpassen aan het niveau van de kinderen en kan ze doorvragen.

Naast de observatie (zie hierboven) kunnen volgende interviewtechnieken worden gebruikt:

- introspectie: De leerkracht vraagt aan het kind hardop te denken.
- retrospectie: De leerkracht vraagt achteraf aan het kind wat het precies gedaan of gedacht heeft.
- doorvragen: De leerkracht stelt de vraag nog eens op een andere manier zonder bijkomende informatie te geven, of ze stelt een nieuwe vraag bij een onvolledig antwoord.
- spiegelen: De leerkracht nodigt het kind uit om na te denken over het eigen handelen of dat van een ander kind.
- opgaven variëren: De leerkracht geeft andere opgaven van ongeveer dezelfde moeilijkheidsgraad, of ze geeft moeilijkere of gemakkelijkere opgaven.
- hulp geven: De leerkracht geeft het kind materiaal, of lost samen met het kind de opgave op en laat het dan een gelijkaardige opgave oplossen, of waarschuwt voor mogelijke fouten enz.

Als op een computerscherm enkel een reeks opgaven verschijnt en als de computer alleen de resultaten bijhoudt, dan verschilt die manier van toetsen niet veel van een schriftelijke toets. Ze bespaart de leerkracht wel een pak administratief werk.
Als de leerkracht over toetsprogramma's beschikt die precies de strategieën bijhouden die de kinderen toepassen, wordt de computer interessanter.
De computer wordt pas helemaal aantrekkelijk bij de evaluatie als de leerkracht over toetsprogramma's beschikt die bovendien op grond van de gebruikte strategieën nieuwe toetsopgaven voor de kinderen aanmaken.

8.2.3 INFORMATIE WAARDEREN

Drie soorten normen

Het belang van normen

Positief waarderen

Een leerkracht kan drie soorten normen hanteren om het werk van de kinderen te waarderen:

- de vorige prestatie van hetzelfde kind (individuele vorderingscriteria)
- het werk van een groep kinderen
(groepsvergelijkende criteria)
- de doelen die kinderen dienen te bereiken (leerplandoelen als criteria).

Zulke normen zijn belangrijk om beslissingen te kunnen nemen. Zo heeft de leerkracht bijvoorbeeld normen nodig om op het einde van een leerstofgeheel te kunnen beslissen wanneer ze met kinderen een volgende stap kan zetten.

Het is aangewezen dat de leerkracht, welke norm ze ook hanteert, de vorderingen van het kind, hoe minimaal ze ook zijn, altijd positief waardeert. Dat kan makkelijker wanneer de leerkracht aandacht heeft voor de individuele vorderingen van een kind. Succeservaringen zijn belangrijk voor elk kind, zeker voor kinderen die slechts met kleine stapjes vorderen.

8.3 ZELFEVALUATIE DOOR KINDEREN

Belang van zelfevaluatie

Hulp van de leerkracht

Naast de evaluatie door de leerkracht moeten kinderen geleidelijk aan hun eigen leerprocessen leren evalueren. Die zelfevaluatie is een essentiële voorwaarde om een zicht te krijgen op de eigen mogelijkheden en om de eigen leerprocessen te leren sturen. Die zelfsturing is een belangrijk doel van goed wiskundeonderwijs.

Hieronder geven we enkele suggesties om de zelfevaluatie door kinderen te stimuleren.

- De leerkracht zorgt voor een positief klimaat zodat kinderen vertrouwen in eigen mogelijkheden. Bijvoorbeeld door positieve waarderingen, door onnodige druk bij toetsen te vermijden.
- Ze laat kinderen inzien dat het belangrijk is de eigen werkwijzen en mogelijkheden te kennen. Bijvoorbeeld om zelfstandig problemen aan te pakken, om te weten wanneer het kind hulp moet vragen.
- Ze zet kinderen aan hun werk te vergelijken met hun voorgaande prestaties en niet enkel met die van de klasgroep.
- De leerkracht geeft kinderen kansen om na te denken over hun aanpak, bijvoorbeeld in leergesprekken.
- Ze heeft ook aandacht voor procesevaluatie door bijvoorbeeld toetsen te geven die erop gericht zijn kinderen aan te zetten na te denken over eigen werkwijzen.
- De leerkracht geeft volop kansen om ervaringen, indrukken en werkwijzen te bespreken met haar, met medeleerlingen in kleine groepen of in de klasgroep.

8.4 WISKundeonderwijs evalueren

Welke aspecten?

Leerkrachten

Schoolteams

Evaluatiegegevens bieden niet alleen informatie over de kinderen maar ook over de aanpak van het wiskundeonderwijs door de leerkracht en het schoolteam.

Om wiskundeonderwijs te evalueren kunnen de verschillende aspecten van de onderwijsleersituatie worden bekeken. Denk maar aan de doelen en leerinhouden, de beginsituatie, de didactische aanpak (zie punt 7 hierboven), de leermiddelen en de evaluatie.

Als leerkrachten en schoolteams een antwoord zoeken op onderstaande vragen krijgen ze allicht een scherper beeld van hun wiskundeonderwijs.

Bakende je als leerkracht de doelen die je met een opgave nastreefde, duidelijk af?
In welke mate ging je als leerkracht uit van situaties die voor kinderen betekenisvol waren?
In hoeverre zorgde je voor een sfeer van veiligheid, waardering, vertrouwen?
Waren de opgaven voldoende duidelijk?
Welke opgaven dagen het denken van kinderen uit?
Welke oefenkansen gaf je?
Welke kansen waren er om op verschillende niveaus te werken?
Wat observeerde je toen de kinderen aan het werk waren?
Hoe besprak je met hen de antwoorden en oplossingswijzen van kinderen?
In welke mate stond je open voor allerlei alternatieve oplossingswijzen? Welke mogelijkheden en suggesties bood je de kinderen aan? Mochten ze suggesties geven?
In welke mate gaf je vooral aan de positieve elementen aandacht?
Hoe toonde je dat je hun oplossingswijze aandachtig bekeken had?
Vroeg je je vooral af: "Wat kan een kind al? Hoe evolueert het?", veeleer dan: "Wat is er fout?"?
Hoe lichtte je je oordeel toe? Hoe argumenteerde en motiveerde je het?
Hoe reageerde je op wat kinderen herwerkt hadden na de evaluatie en hoe ging je na of er verbetering was?

Was er in het schoolteam voldoende overleg over de aanpak van het wiskundeonderwijs?
Worden de vorderingen van de kinderen over heel het basisonderwijs bijgehouden en worden er afspraken gemaakt over de remediëring? Heeft het schoolteam in het nascholingsplan aandacht voor vorming op het vlak van wiskundedidactiek?

9 LEERDOMEINEN BINNEN WISKUNDE IN HET BASISONDERWIJS

Vijf rubrieken

Acht groepen

Symbolen voor
het beheersingsniveau en de aanpak

In de volgende hoofdstukken worden de doelen en de leerinhouden voor de verschillende leerdomeinen opgesomd.
Ze zijn als volgt gerubriceerd:

- Getallenkennis
- Bewerkingen
- Meten en metend rekenen
- Meetkunde
- Domeinoverschrijdende doelen

Onder de rubriek 'Domeinoverschrijdende doelen' worden doelstellingen gegeven over probleemoplossen, leren en studeren, en communiceren bij wiskunde. Inhouden die bij het oplossen van wiskundige problemen aangewend kunnen worden, zijn onder meer aangeduid op het einde van elk leerdomein onder de rubriek 'Toepassingen'. Het is uiteraard onmogelijk een volledige lijst te geven van alle wiskundige situaties waarmee kinderen te maken krijgen.

In elk leerdomein wordt aangeduid wanneer een doel en een leerinhoud het best aan de orde komen. Daarbij worden acht groepen van kinderen onderscheiden: de jongere kleuters (jk), de oudere kleuters (ok) en het eerste tot en met zesde leerjaar (van 1 tot en met 6).

Bij de doelen en leerinhouden wordt per groep/leerjaar aangeduid in welke mate kinderen die moeten beheersen. Aan het verwachte beheersingsniveau worden aanduidingen gekoppeld voor de aanpak door de leerkracht.
De beheersingsniveaus worden met volgende symbolen aangeduid.
Een streepjeslijn duidt aan dat een kind van die groep of van dat leerjaar kennis heeft gemaakt met activiteiten gericht op dat doel. De leerkracht dient aanzetten te geven.
Voor de termen uit de doelenlijst kunnen leerkrachten tijdelijk een of andere geschikte omschrijving, een hulpterm... gebruiken.

Een vette lijn duidt aan dat het kind dat doel verworven moet hebben in die leeftijdsgroep of in dat leerjaar. Aan die doelen dient meestal systematisch te worden gewerkt. Ze krijgen een bijzondere klemtoon in die leeftijdsgroep of in dat leerjaar.
Termen uit de doelenlijst moeten kinderen kennen en kunnen gebruiken vanaf de opgegeven leeftijdsgroep of het opgegeven leerjaar.

Een dubbele lijn duidt aan dat het kind voor die doelen en leerinhouden zijn kennis, inzichten, vaardigheden en attitudes over verschillende leerjaren opbouwt. Denk bijvoorbeeld aan de probleemoplossende vaardigheden. Daarom zullen leerkrachten die doelen en leerinhouden voortdurend meenemen als aandachtspunten in hun onderwijsactiviteiten.

Een gerasterde lijn duidt aan dat het kind die verworven kennis, inzichten en vaardigheden verder integreert, verdiept en/of verbreedt. Daartoe zal de leerkracht:

- in haar aanbod gevarieerde herhalingen en trainingsmomenten voorzien,
- verdiepings- en/of verbredingsactiviteiten opzetten waarbij de leerlingen de gelegenheid krijgen in allerlei situaties het geleerde gevarieerd en spontaan toe te passen.
De kinderen moeten de termen uit de doelenlijst vlot en correct kunnen gebruiken.

Schoolwerkplan, jaarplan en differentiatie

De aanduidingen zijn richtinggevend voor het schoolteam en de leerkrachten die aan en met een schoolwerkplan werken en hun jaarplanningen opmaken. Om aan te sluiten bij de beginsituatie en om te differentieren, kan schoolteam in overleg voor sommige kinderen of groepen van kinderen aangepaste leerlijnen uittekenen.

DEEL 2: LEERDOMEINEN

1 GETALLENKENNIS

1.1 InLEIDING

Kennismaking

Uitbreiding in de diepte

Uitbreiding in de breedte

Binnen het gekende getallenbereik

De doelen en leerinhouden voor het leerdomein getallenkennis zijn in twaalf rubrieken geordend.

Eerst worden de doelen beschreven die nagestreefd dienen te worden om kinderen kennis te laten maken met de wiskundige wereld van de getallen. Zonder die kennis, inzichten en vaardigheden is geen kwantificering mogelijk.
Daarbij wordt onderscheid gemaakt tussen:

1 Hoeveelheden vergelijken en ordenen
2 Tellen
3 Hoeveelheden herkennen en vormen
4 Natuurlijke getallen
5 Breuken
6 Percenten
7 Kommagetallen
8 Negatieve getallen

Daarna worden de doelen beschreven die erop gericht zijn de kennis, inzichten en vaardigheden uit de getallenkennis uit te breiden in de diepte. Ze verrijken de kennis van en het inzicht in het wiskundig systeem.
De doelen zijn als volgt gegroepeerd:
9 Delers en veelvouden
10 Andere talstelsels
11 Getallen schatten en afronden

12 Toepassingen
Ten slotte worden onder die rubriek de doelen beschreven die erop gericht zijn de getallenkennis uit te breiden in de breedte. Ze verhogen de gebruikswaarde van de getallen als middelen om de werkelijkheid te beschrijven, te begrijpen en te beheersen.

De leerlingen moeten de doelen van het aangeduide leerjaar realiseren binnen het getallenbereik dat aangegeven is in doelstelling G11 (Bijvoorbeeld: doelstelling G12 "De natuurlijke getallen ordenen en ze onder meer op een getallenas plaatsen." moeten ze kunnen binnen het getallenbereik aangegeven in doelstelling G11).

1.2 DOELEN EN LEERINHOUDEN

1.2.1 HoEvEELHEDEN VERGELIJKEN EN ORDENEN

G1 Gestructureerde en ongestructureerde aantallen vergelijken en sorteren,
en de vergelijking verwoorden met de termen:
a) veel/weinig, evenveel/niet evenveel, te veel/te weinig, over/te kort, meer/minder, meest/minst
b) is meer dan, is minder dan, is gelijk aan, is niet gelijk aan
c) x meer dan y, x minder dan y
d) en de vergelijking voorstellen met de symbolen $=, \neq,<,>$

G2 Een rangorde aangeven als begin en telrichting afgesproken zijn:
a) met de woorden

- naast, voor, na, tussen
- eerste, middelste, laatste, vorige, volgende, voorlaatste, juist voor, juist na...
b) met rangtelwoorden

1.2.2 Tellen

G3 De telrij opzeggen (akoestisch tellen)
a) tot 5
b) tot 10

G4 Een één-één-verbinding leggen tussen voorwerpen en de rij telwoorden (synchroon tellen)
a) tot 5
b) tot 10

G5 Tellen tot 10 om een aantal te bepalen (resultatief tellen)

G6 Tellen, terugtellen en doortellen (bijv. van 5 tot 15) met onder meer sprongen van één, van twee, van vijf, van machten van tien

1.2.3 HoEVEELHEDEN HERKENNEN EN VORMEN

G7 Hoeveelheden tot vijf onmiddellijk herkennen zonder te tellen

Een hoeveelheid vormen en begrijpen dat ze niet afhangt van de plaats en de ordening in tijd en ruimte (bijv. vier blokjes op een rij is evenveel als vier gestapelde blokjes), noch van bepaalde eigenschappen van de dingen (bijv. vier blokjes is hetzelfde aantal als vier potloden) en dat verwoorden

1.2.4 NATUURLIJKE GETALLEN

G9 Een natuurlijk getal interpreteren en gebruiken:
a) als een aanduiding voor een hoeveelheid
b) als een aanduiding voor een rangorde
c) als een aanduiding voor een verhouding (bijv. bij een meting)
d) in een bewerking
e) als een code (bijv. bij een cijferslot)

G10 Inzicht verwerven in de tientalligheid en het plaatswaardesysteem van ons talstelsel

G11 De natuurlijke getallen lezen en schrijven
a) tot 20
b) tot 100
c) tot 1000
d) tot 100000
e) tot 10000000
f) tot 1000000000
en gebruik maken van de termen en de symbolen:
g) eenheid (E), tiental (T)
h) honderdtal (H)
i) duizendtal (D)
j) tienduizendtal (TD), honderdduizendtal (HD)
k) miljoental (M)

1) natuurlijk getal

G12 De natuurlijke getallen ordenen en ze onder meer op een getallenas plaatsen

G13 Natuurlijke getallen (her)structureren (bijv. 96 is 4 minder dan 100; 96 is 80 en 16 of 8 T en 16 E) om vlot bewerkingen uit te voeren
en de (her)structureringen paraat kennen van:
a) getallen ≤ 10 (bijv. 8 is 5 en 3)
b) getallen >10 waar wenselijk (bijv. 80 is 50 en $30 ; 100$ is 50 en $50 ; 100$ is 4 keer 25)

1.2.5 BREUKEN

G14 Breuken interpreteren en gebruiken:
a) als operator (een stuk (deel) van, een verdeling, een vermenigvuldigingsfactor)
b) als een getal (met een plaats op de getallenas, als een quotiënt van een deling)
c) als een verhouding (onder meer de aanduiding voor een kans)
d) en ze herkennen in de omgangstaal (bijv. helft, kwart, éen en een kwart, anderhalf)

G15 a) Breuken lezen (in de vorm ./. of \div) en schrijven (enkel in de vorm \div) en gebruik maken van de termen
b) breuk, teller, noemer, breukstreep
c) stambreuk

G16 Breuken vergelijken, ordenen en onder meer aanduiden op een getallenas:
a) stambreuken
b) breuken met dezelfde noemer en breuken met dezelfde teller
c) eenvoudige breuken (na vereenvoudiging)
d) en gebruik maken van de term 'gelijkwaardige breuken'

G17 a) Eenvoudige breuken gelijknamig maken om ze te vergelijken en te ordenen of om ze op te tellen of af te trekken
b) en gebruik maken van de term 'gelijknamige breuken'

G18 Breuken (her)structureren (bijv. 9/4 is 2 en 1/4; $8 / 8$ is 2 keer $4 / 8 ; 6 / 8$ is $2 / 8$ minder dan $8 / 8$)

1.2.6 KOMMAGETALLEN

G19 Kommagetallen met hoogstens twee decimalen lezen om geldwaarden in euro te begrijpen (bijv. 4,25 lezen als 4 komma 25 euro of 4 euro en 25 (euro)cent)

G20 Kommagetallen interpreteren en gebruiken als een uitbreiding van het getallenbereik in het tiendelig plaatswaardesysteem

G21 a) Kommagetallen met hoogstens drie decimalen lezen en schrijven en gebruik maken van de termen en de symbolen:
b) tiende (t), honderdste (h), duizendste (d)
c) komma, kommagetal

G22 Kommagetallen met hoogstens drie decimalen vergelijken en ordenen en onder meer aanduiden op een getallenas

G23 In eenvoudige en zinvolle gevallen (bijv. om vraagstukken op te lossen) de gelijkwaardigheid inzien en verduidelijken door omzettingen van kommagetallen en breuken

G24 Kommagetallen (her)structureren (bijv. 0,75 is 0,50 en 0,$25 ; 0,75$ is 3 keer 0,$25 ; 0,75$ is 0,25 minder dan $1 ; 0,75$ is 7 t en 5 h)

1.2.7 Percenten

G25 Een percent interpreteren en gebruiken:
a) als een operator (bijv. 50% van .)
b) als een verhouding
en de term percent gebruiken
G26 Percenten lezen en schrijven
G27 In eenvoudige en zinvolle gevallen de gelijkwaardigheid van breuken, kommagetallen en percenten inzien en verduidelijken door omzettingen

1.2.8 NEGATIEVE GETALLEN

G28 In concrete situaties (bijv. om een temperatuur van $-3,5^{\circ} \mathrm{C}$ af te lezen) ervaringen opdoen met negatieve getallen

G29 In concrete situaties gehele negatieve getallen lezen, schrijven en vergelijken (bijv. verdieping -7 ligt lager dan verdieping $-1 ;-5^{\circ} \mathrm{C}$ is kouder dan - $2{ }^{\circ} \mathrm{C}$)

1.2.9 DELERS EN VEELVOUDEN

G30 De delers van een natuurlijk getal (≤ 100), de gemeenschappelijke deler(s) van natuurlijke getallen (≤ 100)
en dé grootste gemeenschappelijke deler van twee natuurlijke getallen (≤ 100) vinden, en daarbij de termen gemeenschappelijke deler(s) en grootste gemeenschappelijke deler gebruiken

G31 De kenmerken van deelbaarheid door:
a) $2,4,5,10,25,100,1000$
b) 3 en 9
gebruiken (bijv. om de rest te bepalen)
G32 Enkele veelvouden (verschillend van nul) van een natuurlijk getal (≤ 100), enkele gemeenschappelijke veelvouden van twee natuurlijke getallen (≤ 100) en het kleinste gemeenschappelijke veelvoud van twee natuurlijke getallen (≤ 100) vinden,
en daarbij de termen veelvoud, gemeenschappelijk(e) veelvoud(en) en kleinste gemeenschappelijk veelvoud gebruiken

1.2.10 ANDERE TALSTELSELS

G33 Getallen lezen en schrijven in het Romeinse talstelsel

G34 Met concrete voorbeelden aanduiden dat er verschillende talstelsels zijn

1.2.11 GETALLEN SCHATTEN EN AFRONDEN

G35 De relatieve grootte van getallen inschatten (bijv. $9 / 10$ van een blad is net iets minder dan een heel blad; 99 is net iets minder dan 100,1000 is een groot aantal voor een schoolbevolking maar een klein aantal voor de bevolking van een gemeente)

G36 Getallen afronden (de graad van nauwkeurigheid wordt bepaald door het doel van het afronden en door de situatie)

1.2.12 TOEPASSINGEN

Noot vooraf: Voor de doelstellingen over probleemoplossende vaardigheden verwijzen we naar de domeinoverschrijdende doelen.

G37 Hoeveelheden handig tellen
a) door te turven
b) door structuur aan te brengen
c) door schatprocedures te gebruiken bij niet exact bepaalde of niet exact te bepalen gegevens

G38 Rijen maken volgens een afgesproken patroon (bijv. kralen rijgen, versieringen maken)

G39 Orde, regelmaat, verbanden, patronen en structuren tussen en met getallen opsporen, onderzoeken, ontdekken en zelf voorbeelden bedenken

G40 a) Gevarieerde hoeveelheidsaanduidingen lezen en interpreteren (tabellen, grafieken, staaf- en cirkeldiagrammen...)
b) en opstellen (tabellen, grafieken en staafdiagrammen...)

G41 In concrete situaties eenvoudige verhoudingen vaststellen en vergelijken

G42 In diverse situaties de geleerde symbolen, terminologie, notatiewijzen en conventies in verband met getallen correct gebruiken

2 BEWERKINGEN

2.1 InLEIDING

Zeven rubrieken

Binnen het gekende getallenbereik

De doelen en leerinhouden voor het leerdomein bewerkingen zijn onder zeven grote rubrieken geordend.

1 Van situaties naar bewerkingen en omgekeerd
Daarbij komt het eropaan dat kinderen concrete situaties in verband brengen met bewerkingen en omgekeerd.

2 Inzicht in de eigenschappen van en de relaties tussen bewerkingen
3 Hoofdrekenen
Bij hoofdrekenen worden de doelen en leerinhouden gegroepeerd volgens de soort van getallen (natuurlijke getallen, breuken, percenten en kommagetallen). In tweede orde worden de doelen gegroepeerd volgens de bewerking (optellen, aftrekken, vermenigvuldigen, delen).

4 Schattend rekenen

5 Cijferen

De doelen worden gegroepeerd volgens de bewerking (optellen, aftrekken, vermenigvuldigen, delen).

6 De zakrekenmachine gebruiken

7 Toepassingen

De bewerkingen die beschreven zijn in de doelstellingen, moeten de leerlingen van het aangeduide leerjaar kunnen uitvoeren binnen het gekende getallenbereik.
Bijvoorbeeld: volgens doel B18 moeten de kinderen "...die vermenigvuldigingen correct uitvoeren, verwoorden en noteren". Het gaat hier om vermenigvuldigingen "...naar analogie met de vermenigvuldigingstafels (bijv.: $2 \times 30 ; 20 \times 30 ; 20 \times 30 ; 6 \times 5000 ; 9 \times 4000$)..." In het tweede leerjaar moet het product kleiner dan of gelijk aan 100 zijn (bijv. 3×30). In het derde leerjaar mag het product kleiner of gelijk aan 1000 zijn (bijv. 30×30), enz.

Breng de doelen in verband met elkaar.
Een voorbeeld: volgens doel B2.c moeten de leerlingen "...bij formules situaties bedenken...". Voor de hogere leerjaren (zie rasters in de leerlijn) kan dat onder meer betekenen dat ze bij een percentaanduiding een passende situatie kunnen bedenken.
Een ander voorbeeld: doel B1 en B15 maar ook doel B1 en B20 moeten samen worden gelezen. Dat betekent in dat geval dat kinderen in de lagere groepen/klassen ervaringen zullen moeten opdoen die leiden tot de vulling van de begrippen 'het dubbele' en 'de helft'.

2.2 DOELEN EN LEERINHOUDEN

2.2.1 VAN SITUATIES NAAR BEWERKINGEN EN OMGEKEERD

B1 In eenvoudige situaties rekenhandelingen uitvoeren en ze verwoorden en daarbij gebruik maken van de begrippen: evenveel maken, bijdoen, wegdoen, samentellen, vermeerderen, verminderen, aantal keer iets nemen, verdelen, de helft nemen, het dubbele nemen...

B2 Eenvoudige situaties omzetten in formules met natuurlijke getallen, breuken, percenten en kommagetallen, en omgekeerd (van formule naar situatie) door:
a) bewerkingen handelend uit te voeren, die te verwoorden
en daarbij gebruik te maken van termen als

- optellen, aftrekken.
- vermenigvuldigen, delen...
b) vast te stellen welke schema's (bijv. een pijlenschema) en bewerkingen passend zijn en die bewerkingen in formulevorm om te zetten
c) bij formules situaties te bedenken en die situaties te verwoorden

B3 De geleerde symbolen, notatiewijzen en conventies in verband met bewerkingen met getallen
a) kennen en gebruiken in verschillende situaties
b) en de structuur van formules begrijpen en de formules correct toepassen
c) en volgende termen gebruiken:

- optelling, plus(teken), som aftrekking, $\min ($ teken $)$, verschil
- 'term(en)', aftrektal, aftrekker
- vermenigvuldiging, maal- of vermenigvuldigingsteken, product, deling, deelteken, quotiënt en rest
- factor(en), vermenigvuldiger, vermenigvuldigtal, deeltal, deler
- bewerking
d) en volgende symbolen benoemen, noteren en correct gebruiken:
+, -
x , :
()

2.2.2 INZICHT IN DE EIGENSCHAPPEN VAN EN DE RELATIES TUSSEN BEWERKINGEN

B4 Ervaren en toepassen dat de plaats van de termen/factoren:
a) geen invloed heeft op de som (bijv. $4+2=2+4$)
b) wel invloed heeft op het verschil (bijv. 7-2 $=2-7$)
c) geen invloed heeft op het product (bijv. $4 \times 3=3 \times 4$)
d) wel invloed heeft op het quotiënt (bijv. 4:2 $=2: 4$)
en in de gevallen a) en c) gebruik maken van de term 'van plaats wisselen' (commutativiteit)

B5 Ervaren en toepassen dat de volgorde waarin de termen/factoren worden samengenomen en dat dus de plaats van de haakjes:
a) geen invloed heeft op de som (bijv. $(3+4)+2=3+(4+2))$
b) wel invloed heeft op het verschil (bijv. $(9-5)-3 \neq 9-(5-3)$)
c) geen invloed heeft op het product (bijv. $(4 \times 3) \times 2=4 \times(3 \times 2))$
d) wel invloed heeft op het quotient (bijv. $(16: 4): 2 \neq 16:(4: 2))$
en in de gevallen a) en c) gebruik maken van de term 'schakelen' (associativiteit)

B6 Ervaren en toepassen dat:
a) bij een vermenigvuldiging de factoren gesplitst kunnen worden in een som of een verschil zonder dat het resultaat verandert (de vermenigvuldiging is distributief ten opzichte van de optelling en de aftrekking) (bijv. $7 \times 6=(7 \times 5)+(7 \times 1))$
b) bij een deling alleen het deeltal gesplitst kan worden in een som of een verschil zonder dat het resultaat verandert (de deling is alleen rechts-distributief ten opzichte van de optelling en de aftrekking) (bijv. $36: 3=(30: 3)+(6: 3)$)
en daarbij gebruik maken van de term 'splitsen en verdelen'

B7 Ervaren en toepassen dat:
a) de som van twee getallen niet verandert als bij éen term een getal opgeteld en van de andere term hetzelfde getal afgetrokken wordt (bijv. $31+19=30+20$)
b) het verschil van twee getallen niet verandert als bij beide termen hetzelfde getal opgeteld of van beide termen hetzelfde getal afgetrokken wordt (bijv. 73-22 = 71-20)
c) het product van twee getallen niet verandert als één factor vermenigvuldigd wordt met een getal en de andere factor gedeeld wordt door hetzelfde getal (bijv. $12 \times 5=6 \times 10$)
d) het quotient van een deling niet verandert als beide factoren met hetzelfde getal vermenigvuldigd of door hetzelfde getal gedeeld worden (bijv. $48: 12=24: 6$)

B8 Inzicht hebben in de relaties tussen de bewerkingen:
a) optelling en aftrekking
b) vermenigvuldiging en deling
c) optelling en vermenigvuldiging
d) aftrekking en deling

2.2.3 HOOFDREKENEN

2.2.3.1 Natuurlijke getallen

(De termen, factoren en resultaten zijn natuurlijke getallen)

- Optellen

B9 De correcte resultaten bij de elementaire optellingen paraat kennen:
a) som ≤ 10
b) som ≤ 20

B10 Optellen volgens standaardprocedures en de optelling verwoorden en noteren:
a) som ≤ 20
b) som ≤ 100

B11 Bij eenvoudige optellingen (bijv.: $2+9$; $72+40 ; 98+25 ; 85+45 ; 315+600 ;$ $600+460 ; 990000+110000)$ flexibel een doelmatige oplossingsmethode kiezen op basis van inzicht in de structuur van de getallen en in de eigenschappen van de optelling en de optellingen correct uitvoeren, verwoorden en noteren:
a) som ≤ 20
b) som ≤ 100
c) som ≤ 1000
d) som ≤ 100000
e) som ≤ 1000000000 (met grote getallen met eindnullen)

- Aftrekken

B12 De correcte resultaten bij de elementaire aftrekkingen paraat kennen:
a) aftrektal ≤ 10
b) aftrektal ≤ 20, aftrekker ≤ 10

B13 Aftrekken volgens standaardprocedures en de aftrekking verwoorden en noteren:
a) aftrektal ≤ 20
b) aftrektal ≤ 100

B14 Bij eenvoudige aftrekkingen (bijv. 17-13; 357-23; 153-80; 715-400; 715-315; 680-280; 10500-3500; 1500 000-750 000) flexibel een doelmatige oplossingsmethode kiezen op basis van inzicht in de structuur van de getallen en in de eigenschappen van de aftrekking
en de aftrekkingen correct uitvoeren, verwoorden en noteren:
a) aftrektal ≤ 20
b) aftrektal ≤ 100
c) aftrektal ≤ 1000
d) aftrektal ≤ 100000
e) aftrektal ≤ 1000000000 (met grote getallen met eindnullen)

- Vermenigvuldigen

B15 Weten dat de begrippen en de termen 'verdubbelen' en 'het dubbele nemen' van hoeveelheden hetzelfde betekenen als vermenigvuldigen met 2 en ze correct gebruiken

B16 Weten dat de vermenigvuldiger links wordt geschreven

B17 De vermenigvuldigingstafels tot en met 10 paraat kennen

B18 Bij vermenigvuldigingen naar analogie met de vermenigvuldigingstafels
(bijv.: $2 \times 30 ; 20 \times 30 ; 6 \times 5000 ; 9 \times 4000$) en buiten de vermenigvuldigingstafels (bijv. $4 \times 25 ; 9 \times 15 ; 4 \times 125 ; 2 \times 2500$; 11×8000)
flexibel een doelmatige oplossingsmethode kiezen op basis van inzicht in de structuur van de getallen en in de eigenschappen van de vermenigvuldiging; die vermenigvuldigingen correct uitvoeren, verwoorden en noteren

B19 Vermenigvuldigen met:
a) $10 ; 100$
b) $5 ; 50$
c) $1000 ; 10000$

- Delen

B20 Weten dat de begrippen en termen 'halveren' en 'de helft nemen van' hetzelfde betekenen als delen door 2 en ze correct gebruiken

B21 De delingstafels die horen bij de vermenigvuldigingstafels tot en met 10 paraat kennen

B22 Bij eenvoudige delingen (bijv. 45:7 quotiënt 6 rest 3; 96: 8; 750:3;100000:4) flexibel een doelmatige oplossingsmethode kiezen op basis van inzicht in de structuur van de getallen en in de eigenschappen van de deling; die delingen correct uitvoeren, verwoorden en noteren:
a) bij opgaande delingen naar analogie met de delingstafels (bijv. 720 : 9) en buiten de delingstafels (bijv. $69: 3 ; 750: 3$)
b) bij niet-opgaande delingen van het type deeltal ≤ 100, de deler ≤ 10 en het quotiënt ≤ 10 (bijv. $45: 7$ quotiënt 6 rest 3 want $45=(6 \times 7)+3)$
c) bij andere niet-opgaande delingen
(bijv. 85: 7 quotiënt 12 rest 1 ;
1003:250 quotiënt 4 rest 3)
B23 Delen door:
a) $10 ; 100$
b) $5 ; 50$
c) $1000 ; 10000$

2.2.3.2 BREUKEN

B24 Een breuk met noemer kleiner dan of gelijk aan tien nemen van een grootheid en van een hoeveelheid

B25 Een breuk met noemer meestal kleiner dan of gelijk aan tien nemen van een getal

- Optellen

B26 In praktische gevallen met inzicht optellen van eenvoudige:
a) gelijknamige breuken (bijv. $3 / 4+3 / 4$)
b) ongelijknamige breuken (bijv. $1 / 2+3 / 4$)

- Aftrekken

B27 In praktische gevallen met inzicht aftrekken van eenvoudige:
a) gelijknamige breuken (bijv. 3/4-1/4)
b) ongelijknamige breuken (bijv. 3/4-1/2)

- Vermenigvuldigen

B28 In praktische gevallen eenvoudige breuken met inzicht vermenigvuldigen met:
a) een natuurlijk getal
(bijv.: $10 \times 1 / 12=10 / 12=5 / 6$;
$5 \times 2 / 3=10 / 3 ; 2 \times 3 / 8=3 / 4$)
b) een breuk
(bijv.: $1 / 3 \times 4 / 5=4 / 15 ; 3 / 4 \times 1 / 2=3 / 8$)

- Delen

B29 In praktische gevallen met inzicht:
a) eenvoudige breuken delen door een natuur-
lijk getal
(bijv.: $8 / 9: 4=2 / 9 ; 3 / 4: 2=3 / 8$)
b) een natuurlijk getal delen door een stambreuk (bijv. $4: 1 / 2=8$)

2.2.3.3 KOMMAGETALLEN

- Optellen

B30 Eenvoudige kommagetallen optellen (bijv. $0,5+2,25=2,75$)

- Aftrekken

B31 Eenvoudige kommagetallen aftrekken (bijv. 3,75-0,4 $=3,35$)

- Vermenigvuldigen

B32 Het product berekenen van een eenvoudig kommagetal (met bijzondere aandacht voor $0,1 ; 0,5 ; 0,01,0,001)$ met:
a) een natuurlijk getal
(met bijzondere aandacht voor vermenigvuldigingen met $2,4,5,10,50,100$ en 1000, en voor vermenigvuldigingen naar analogie met de vermenigvuldigingstafels) (bijv. $9 \times 0,7=6,3 ; 0,12 \times 10=1,2$; $100 \times 2,735=273,5 ; 1,5 \times 5=7,5$)
b) een kommagetal
(met bijzondere aandacht voor vermenigvuldigingen naar analogie met de vermenigvuldigingstafels (bijv. $0,4 \times 0,3=0,12$; $0,1 \times 0,3=0,03 ; 0,5 \times 6,4=3,2$)

- Delen

B33 Eenvoudige kommagetallen delen door:
a) een natuurlijk getal
(met bijzondere aandacht voor delingen door $2,4,5,10,50,100$ en 1000 , en voor delingen naar analogie met de delingstafels)
(bijv.: $0,10: 2=0,05 ; 0,24: 6=0,04$;
$1,4: 10=0,14 ; 247,3: 100=2,473$; $2,5: 5=0,5)$
b) een eenvoudig kommagetal
(met bijzondere aandacht voor delingen door 0,$1 ; 0,01 ; 0,001 ; 0,5$; (bijv. $0,3: 0,1=3 ; 2,4: 0,2=12$) en voor delingen naar analogie met de delingstafels (bijv. 0,8:0,4 =2)

B34 Natuurlijke getallen delen door:
a) een natuurlijk getal waarbij het quotiënt een kommagetal wordt (met bijzondere aandacht voor delingen door $5,10,50,100,1000$)
(bijv.: $4: 8=0,5 ; 12: 5=2,4$)
b) eenvoudige kommagetallen (met bijzondere aandacht voor delingen door 0,$1 ; 0,01 ; 0,001 ; 0,5$;
(bijv. $1: 0,2=5 ; 12: 0,1=120$; $3: 0,5=6$)
en voor delingen naar analogie met de delingstafels (bijv. $10: 0,2=50$))

2.2.3.4 Percenten

B35 In eenvoudige en praktische gevallen percenten van een grootheid of van een getal nemen

2.2.4 SCHATTEND REKENEN

B36 Schattend rekenen:
a) om de uitkomst van een berekening bij benadering te bepalen (bijv.: het product van 4 en 19 is ongeveer gelijk aan het product van 4 en 20.)
b) om de grootteorde van de uitkomst van een berekening (onder meer op de zakrekenmachine) globaal te controleren (bijv.: het product van 44 en 8 - maar ook van 44,5 en 8,3 - ligt tussen 320 en 400 .)

B37 Schatprocedures vinden en aanwenden als de gegevens voor een exacte berekening ontbreken of onvolledig zijn, niet exact bepaald of niet exact te bepalen zijn (bijv. een staal nemen om de totale hoeveelheid te schatten)

2.2.5 CIJFEREN

- Optellen

B38 Maximum vijf getallen optellen (De som is kleiner dan 10000000 en heeft maximum drie cijfers na de komma.):
a) natuurlijke getallen
b) kommagetallen

- Aftrekken

B39 Aftrekken (Het aftrektal is kleiner dan 10000000 en het verschil bevat maximum 8 cijfers waarvan maximum 3 cijfers na de komma.) met:
a) natuurlijke getallen
b) kommagetallen

- Vermenigvuldigen

B40 Het product berekenen van een natuurlijk getal (Het product bevat maximum 8 cijfers.) met:
a) een natuurlijk getal kleiner dan 10
b) een natuurlijk getal kleiner dan 100
c) een natuurlijk getal kleiner dan 1000

B41 Het product berekenen van een kommagetal met hoogstens drie cijfers na de komma (Het product bevat maximum 8 cijfers waarvan maximum 3 cijfers na de komma.) met:
a) een natuurlijk getal kleiner dan 100
b) een natuurlijk getal kleiner dan 1000
c) een kommagetal met hoogstens drie cijfers na de komma

- Delen

B42 Een natuurlijk getal delen (Het quotiënt bevat maximum 3 cijfers na de komma.) door:
a) een natuurlijk getal kleiner dan 10 tot op 1 nauwkeurig
b) een natuurlijk getal kleiner dan 10 tot op 1 of 0,1 of 0,01 of 0,001 nauwkeurig
c) een natuurlijk getal kleiner dan 1000 tot op 1 of 0,1 of 0,01 of 0,001 nauwkeurig
d) een kommagetal met hoogstens drie cijfers na de komma

B43 Een kommagetal delen (Het quotiënt bevat maximum 3 cijfers na de komma.) door:
a) een natuurlijk getal kleiner dan 10 tot op 1 of 0,1 of 0,01 of 0,001 nauwkeurig
b) een natuurlijk getal kleiner dan 1000 tot op 1 of 0,1 of 0,01 of 0,001 nauwkeurig
c) een kommagetal met hoogstens 3 cijfers (bijv. 87,$5 ; 8,75 ; 0,87$) tot op 1 of 0,1 of 0,01 of 0,001 nauwkeurig

B44 Bij een niet-opgaande staartdeling (De deler is een natuurlijk getal.) de juiste waarde van de rest bepalen

- Algemeen

B45 De procedures om te cijferen (cijferalgoritmes) begrijpen, mede op basis van inzicht in de tientalligheid en het plaatswaardesysteem van ons talstelsel

B46 De uitgevoerde bewerkingen controleren:
a) door de uitkomsten van de bewerkingen te vergelijken met de schatting
b) door bij de optelling en de aftrekking de omgekeerde bewerking uit te voeren
c) door de zakrekenmachine te gebruiken

2.2.6 DE ZAKREKENMACHINE GEBRUIKEN

B47 De zakrekenmachine efficiënt en met inzicht gebruiken om op te tellen, af te trekken, te vermenigvuldigen en te delen en procenten te berekenen

B48 De zakrekenmachine gebruiken om meer inzicht te verwerven in de structuur van de getallen en in de eigenschappen van de bewerkingen en in de relaties tussen procenten, kommagetallen en breuken

2.2.7 TOEPASSINGEN

Noot vooraf: Voor de doelstellingen over probleemoplossende vaardigheden verwijzen we naar de domeinoverschrijdende doelen.

B49 Enkelvoudige vraagstukken oplossen over optellen en aftrekken in verschillende situaties met:
a) natuurlijke getallen
b) breuken
c) kommagetallen

B50 Enkelvoudige vraagstukken oplossen over vermenigvuldigen en delen in verschillende situaties met
a) natuurlijke getallen
b) breuken
c) kommagetallen

B51 Samengestelde vraagstukken oplossen over optellen, aftrekken, vermenigvuldigen en delen met:
a) natuurlijke getallen
b) breuken
c) kommagetallen

B52 De meest geschikte rekenwijze kiezen (cijferen, hoofdrekenen, een zakrekenmachine gebruiken, schattend rekenen)

B53 Verhoudingen bepalen:
a) zonder bewerkingen uit te voeren
(bijv. bij verhoudingsgetrouwe afbeeldingen in tekeningen, op kaarten...)
b) via berekeningen
(bijv. bij kopiëren, projecteren, modelbouwen, tekenen, schaalberekenen)

B54 Verhoudingen vergelijken, het ontbrekende verhoudingsgetal berekenen en gelijkwaardige verhoudingen bepalen bij aan elkaar gebonden:
a) recht-evenredige grootheden (bijv. gewichtprijs, aantal-prijs, afstand-prijs, afstand-tijd)
b) omgekeerd evenredige grootheden (bijv. debiet-tijd om eenzelfde volume te vullen, tijd-snelheid bij gelijke afstand)

B55 In eenvoudige situaties het ontbrekend verhoudingsgetal berekenen om:
a) gelijkwaardige verhoudingen in verdeelsituaties te bepalen
b) te mengen volgens een gegeven verhouding
c) in te wisselen
(bijv. bij munten, afstandsmaten)
B56 Het (groei-)percentage berekenen (ook met behulp van de zakrekenmachine) en gebruiken in eenvoudige praktische toepassingssituaties als prijsberekeningen, het vergelijken van aantallen (bijv. bevolkingstoename), eenvoudige intrestvraagstukken.

B57 a) Aan de hand van voorbeelden uitleggen wanneer het begrip gemiddelde gebruikt kan worden en het gemiddelde berekenen
b) en de mediaan aanduiden

B58 De ongelijke verdeling uitvoeren als:
a) de som en het verschil gegeven zijn
b) de som en de verhouding van de delen gegeven zijn

B59 Bruto, netto en tarra benoemen, berekenen en gebruiken

3 METEN EN METEND REKENEN

3.1 InLEIDING

Vier rubrieken

De gekende maateenheden
De doelen en leerinhouden voor het leerdomein meten en metend rekenen zijn onder vier grote rubrieken geordend.

1 Vergelijken zonder een maateenheid te gebruiken
2 Meten met natuurlijke maateenheden

3 Meten en metend rekenen met standaardmaateenheden

4 Toepassingen

De rubrieken en de doelen in die rubrieken zijn geordend volgens een leerlijn. Die leerlijn is gebaseerd op de volgorde waarin kinderen in de loop van hun ontwikkeling in contact komen met de verschillende meetaspecten. Daarom kan de leerkracht het best die leerlijn volgen in de leergangen van meten en metend rekenen.

De leerkracht zal de doelen telkens opnieuw concretiseren en 'vertalen' bij de voorbereiding van elke leergang voor meten en metend rekenen (lengte, oppervlakte, inhoud en volume, gewicht, tijd, geldwaarden, temperatuur, en hoekgrootte).

Dat betekent evenwel niet dat die doelen voor elke grootheid altijd in die strikte volgorde aan bod moeten komen en dat de verschillende doelen in elk leerjaar opnieuw doorlopen worden.

In het deel 3.2.3 'Meten en metend rekenen met standaardmaateenheden' worden eerst de doelen van de algemene leerlijn beschreven. Daarna worden vanaf 3.2.3.1 tot 3.2.3.8 de doelen beschreven die gelden voor metingen van lengte, oppervlakte, inhoud en volume, gewicht, tijd, geldwaarden, temperatuur en hoekgrootte. Ze moeten worden gelezen samen met de doelen van de algemene leerlijn voor meten en metend rekenen met standaardmaateenheden en ze moeten erin worden geïntegreerd.

De doelen van het aangeduide leerjaar moeten de leerlingen realiseren met de gekende maateenheden (bijv.: De gebruiksvoorwerpen bedoeld in doel MR52 worden gekozen volgens de inhoudsmaten die ze kennen volgens doel MR51.) en binnen het gekende getallenbereik.

3.2 DOELEN EN LEERINHOUDEN

3.2.1 VERGELIJKEN ZONDER EEN MAATEENHEID TE GEBRUIKEN (kwalitatief vergelijken)

MR1 Twee dingen kwalitatief vergelijken volgens kleurschakering, geluidssterkte, levensduur, hardheid, lengte, gewicht, oppervlakte, inhoud en volume, tijdsduur, temperatuur, snelheid...,
en de vergelijking verwoorden met termen als: donkerder, luider, langer, groter, kleiner, even ver, lichter, even groot, later, kortst, kouder, even vlug...

MR2 Zelf strategieën ontdekken om dingen kwalitatief te vergelijken (bijv. de inhoud van twee ongelijke glazen vergelijken door de inhoud over te gieten in twee gelijke glazen)

MR3 Ervaren en verwoorden dat sommige handelingen niets veranderen aan de grootte van de dingen (bijv. een inhoud overgieten, een touw strekken of oprollen) en andere wel (bijv. de oppervlakte van een figuur verkleint door er een stuk af te knippen)

MR4 Dingen gelijk maken of ongelijk maken op basis van een kwalitatieve vergelijking (bijv. iets langer maken, twee pakjes van verschillend gewicht even zwaar maken)

MR5 Dingen sorteren op basis van een kwalitatieve vergelijking volgens éen of twee gemeenschappelijke kenmerken

MR6 Dingen rangschikken op basis van een kwalitatieve vergelijking (bijv. voorwerpen rangschikken van zwaar naar licht)

3.2.2 METEN MET NATUURLIJKE MAATEENHEDEN

MR7 Beseffen dat de grootte van dingen bepaald kan worden met behulp van natuurlijke maateenheden voor lengte (bijv. met handspan, voet), oppervlakte (bijv. met schriften, blaadjes, ruitvormige maateenheden), inhoud (bijv. een inhoud met kopjes, lepels, flessen..., een volume met lucifersdoosjes, blokken), gewicht (bijv. met kastanjes), tijdsduur (bijv. tijdsduur om een taak uit te voeren), hoekgrootte (bijv. met een driehoekig stukje smeerkaas)

MR8 Ervaren en inzien dat bij een meting van lengte, oppervlakte, inhoud en volume, gewicht, tijdsduur en hoekgrootte nagegaan wordt hoeveel keer de mateenheid in de te meten grootheid gaat

Het meetresultaat noteren na een meting met natuurlijke maateenheden (bijv. een aantal bekertjes tekenen, turven)

MR10 De gemeten dingen sorteren en rangschikken na een meting met natuurlijke maateenheden

MR11 Ervaren en inzien dat kleinere maateenheden een nauwkeuriger meting toelaten (met kleine kopjes kan je de inhoud van een pot nauwkeuriger bepalen dan met een grote kan)

MR12 Ervaren en inzien dat hoe groter de maateenheid is, hoe kleiner het maatgetal is en omgekeerd (bijv. hoe groter de stappen, hoe minder stappen te zetten om een afstand af te passen)

MR13 Een grootte schatten bij een meting met natuurlijke maateenheden en de schatting vergelijken met het meetresultaat

MR14 Meten met zelfgemaakte meetinstrumenten en ze ijken (bijv. zelf gegradueerde recipiënten, meetrooster)

MR15 Beseffen dat er een verschil is tussen een subjectieve ervaring en een objectieve meting van een grootheid (bijv. de indruk van tijdsduur en de werkelijke tijdsduur)

3.2.3 METEN EN METEND REKENEN MET STANDAARDMAATEENHEDEN

MR16 De nood aan standaardmaateenheden ervaren
MR17 a) De standaardmaateenheden kennen en gebruiken (zie doel MR29, MR30, MR36, MR37, MR50, MR51, MR53, MR54, MR61, MR62, MR68, MR71, MR73, MR74, MR75)
b) en de termen 'maatgetal', 'maateenheid' en 'maat' kennen en gebruiken

MR18 Referentiematen (bijv. 1 kg is het gewicht van een doos klontjessuiker, 11 is de inhoud van een melkbrik, een deur is ongeveer 2 m hoog, 100 m is de afstand van ... tot ...; een brood kost ongeveer ... fr.) kennen en gebruiken

MR19 Resultaten van metingen en berekeningen lezen en noteren (zie doel MR30, MR37, MR51, MR54, MR62, MR68, MR71, MR74, MR75):
a) met één maateenheid
(bijv. bijna 1 m , ongeveer 1 kg , precies 1 1)
b) met meer dan één maateenheid (bijv. $4 \mathrm{~m} 23 \mathrm{~cm}, 3.115 \mathrm{cl}, 1 \mathrm{~kg} 125 \mathrm{~g}$)
c) als kommagetal met één maateenheid
(bijv. $4,23 \mathrm{~m}, 3,15 \mathrm{l}, 1,125 \mathrm{~kg}$)
MR20 Een grootte schatten bij meetopdrachten met standaardmaateenheden en de schatting vergelijken met het meetresultaat (zie doel MR31, MR32, MR33, MR34, MR41, MR42, MR43, MR44, MR45, MR46, MR47, MR48, MR52, MR58, MR59, MR60, MR63, MR69, MR70, MR71, MR74, MR77)

MR21 De gemeten dingen sorteren of rangschikken na een meting met standaardmaateenheden

MR22 Zelfgemaakte meetinstrumenten ijken en correct gebruiken (bijv. een koord van 10 m verdeeld in meters, een fles gradueren in dl, een meetrooster)

MR23 Gebruikelijke meetinstrumenten correct gebruiken bij metingen van lengte (bijv. meetlat, duimstok, meetlint), inhoud (bijv. een maatbeker), gewicht (bijv. een digitale weegschaal), tijdsduur (bijv. uurwerk, chronometer) en hoekgrootte (bijv. gradenboog, geodriehoek)

MR24 Een passend meetinstrument kiezen bij een meting met standaardmaateenheden

MR25 Beseffen dat de nauwkeurigheid van de meting beïnvloed wordt door de mateenheid, het doel van de meting en de verwachte nauwkeurigheid, de werkwijze en handigheid van degene die meet, de kwaliteit van het meetinstrument, de aard van het voorwerp dat gemeten wordt en de wijze van afronden

MR26 Een passende standaardmaateenheid kiezen (bijv. De lengte van de klas kan het best uitgedrukt worden in m en niet in mm .)

MR27 Ervaren en inzien dat hoe groter de maateenheid is, hoe kleiner het matgetal is en omgekeerd (bijv. Als de maateenheid 10 keer groter wordt, zal het maatgetal 10 keer kleiner worden.)

MR28 Met de gekende standaardmaateenheden in betekenisvolle situaties herleidingen uitvoeren:
a) tussen de hoofdeenheid en de afgeleide eenheden
(bijv. $1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}, 1 \mathrm{~kg}=1000 \mathrm{~g}$)
b) tussen frequent gebruikte maateenheden
(bijv. $1 \mathrm{dl}=10 \mathrm{cl}, 1 \mathrm{~min} .=60 \mathrm{sec}$.)

3.2.3.1 Lengte

MR29 a) Weten dat het resultaat van een lengtemeting uitgedrukt kan worden in meter of daarvan afgeleide maateenheden,
en daarbij de termen
b) lengte, breedte, hoogte en dikte
c) diepte, omtrek en afstand gebruiken
mR30 Het metriek stelsel in verband met lengte opbouwen
en daarbij volgende maateenheden en hun symbolen lezen en gebruiken:
a) de meter (m)
b) de centimeter (cm)
c) de decimeter (dm)
d) de kilometer (km)
e) de millimeter (mm)

MR31 Een lengte (breedte, dikte, afstand...) meten en afmeten bij voorwerpen en lijnstukken, en lijnstukken met een gegeven lengte tekenen
mR32 Inzien dat ook lijnen (onder meer de omtrek) met een gebroken, gebogen of grillige vorm een lengte hebben en die bij benadering bepalen

MR33 De omtrek van vlakke figuren meten en van de gekende vlakke figuren berekenen en daarbij de eigenschappen van de zijden gebruiken

MR34 De waarde van π ontdekken als de constante verhouding tussen de omtrek en de diameter van een cirkel (De benaderde waarde van π is 3,14) en de formule voor de omtrekberekening van de cirkel gebruiken ($\pi \times 2 \times r$ of $\pi \times d$)

3.2.3.2 OPPERVLAKTE

MR35 Beseffen dat de oppervlaktebepaling van figuren afhankelijk is van twee dimensies (bijv. de oppervlakte yan een rechthoek heeft te maken met een basis en hoogte)

MR36 Weten dat het resultaat van een oppervlaktemeting uitgedrukt kan worden in vierkante meter of daarvan afgeleide maateenheden, en de term oppervlakte gebruiken

MR37 Het metriek stelsel in verband met oppervlakte opbouwen, en daarbij volgende maateenheden en hun symbolen lezen en gebruiken:
a) de vierkante centimeter $\left(\mathrm{cm}^{2}\right)$, de vierkante decimeter $\left(\mathrm{dm}^{2}\right)$ en de vierkante meter (m^{2})
b) de vierkante kilometer (km^{2})
c) de landmaten (nooit in decimale vorm): de centiare (ca), de are (a), de hectare (ha)

MR38 Het verband inzien tussen oppervlaktematen en landmaten

MR39 Ervaren en inzien dat figuren met een verschillende vorm, dezelfde oppervlakte kunnen hebben (bijv. $1 \mathrm{~m}^{2}$ heeft niet noodzakelijk de vorm van een vierkant; een driehoek en een vierkant kunnen dezelfde oppervlakte hebben.)
mR40 Ervaren en inzien dat de omtrek van figuren kan verschillen terwijl hun oppervlakte dezelfde is en omgekeerd

MR41 De oppervlakte van figuren bepalen door ze te beleggen met vierkanten van $1 \mathrm{~m}^{2}$ of $1 \mathrm{dm}^{2}$ of $1 \mathrm{~cm}^{2}$

MR42 De basisformule (basis x hoogte; $\mathrm{b} \times \mathrm{h}$) voor de oppervlakteberekening van rechthoeken en vierkanten
a) begrijpen (via het beeld van een aantal rijen van hetzelfde aantal gelijke maateenheden)
b) paraat kennen en gebruiken

MR43 Ervaren en inzien dat de oppervlakte van een parallellogram berekend kan worden via omstructurering naar een rechthoek en de formule ($b \times h$) paraat kennen en gebruiken

MR44 Ervaren en inzien dat de oppervlakte van een driehoek gelijk is aan de helft van de oppervlakte van een rechthoek met dezelfde basis en dezelfde hoogte, en de formule $(\mathrm{b} \times \mathrm{h}) / 2$ paraat kennen en gebruiken

MR45 Ervaren en inzien dat de oppervlakte van volgende vlakke figuren bepaald kan worden door ze om te structureren naar figuren waarvan men de oppervlakte kan berekenen
a) ruit
b) trapezium
c) veelhoek

MR46 Ervaren en inzien dat de oppervlakte van een regelmatige veelhoek met een groot aantal hoekpunten de oppervlakte van een cirkel benadert en dat de oppervlakte van de cirkel berekend wordt met de formule rx r x π

MR47 Inzien dat de oppervlakte van een kubus, een balk en een cilinder gelijk is aan de som van de oppervlakten van de grensvlakken

MR48 Inzien dat ook vlakstukken en ruimtefiguren met een gebogen of een grillige vorm een oppervlakte hebben en de oppervlakte van deze vlakstukken bij benadering bepalen

3.2.3.3 INHOUD EN VOLUME

MR49 Beseffen dat de inhouds(volume)bepaling afhankelijk is van drie dimensies (bijv. de volumeberekening van een balk heeft te maken met een breedte, een diepte en een hoogte)

MR50 Weten dat het resultaat van een inhoudsmeting uitgedrukt kan worden in liter of daarvan afgeleide maateenheden, en daarbij de term inhoud gebruiken

MR51 Het metriek stelsel in verband met inhoud opbouwen
en daarbij volgende maateenheden en hun symbolen lezen en gebruiken:
a) de liter (l)
b) de deciliter (dl), de centiliter (cl)
c) de milliliter (ml)

MR52 De inhoud meten van allerlei gebruiksvoorwerpen (bijv. drinkglas, bierflesje, koffiekopje, soepbord, melkfles, lepel, emmer, flesje voor frisdranken...) en een bepaalde inhoud afmeten

MR53 Weten dat het resultaat van een volumeberekening uitgedrukt kan worden in kubieke meter of daarvan afgeleide maateenheden, en daarbij de term volume gebruiken

MR54 Het metriek stelsel in verband met volume opbouwen
en daarbij volgende termen en symbolen lezen en gebruiken: de kubieke meter $\left(\mathrm{m}^{3}\right)$, de kubieke decimeter (dm^{3}), de kubieke centimeter (cm^{3} of cc)

MR55 Het verband inzien tussen inhoudsmaten en ruimtematen (bijv. tussen liter en dm^{3}, tussen ml en cm^{3})

MR56 Ervaren en inzien dat ruimtefiguren met een verschillende vorm hetzelfde volume kunnen hebben (bijv. $1 \mathrm{~m}^{3}$ heeft niet noodzakelijk de vorm van een kubus; een balk en een cilinder kunnen hetzelfde volume hebben.)

MR57 Ervaren en inzien dat de oppervlakte van ruimtefiguren kan verschillen terwijl het volume hetzelfde is en omgekeerd

MR58 De basisformule (opp. grondvlak x hoogte) voor de berekening van het volume van een balk en een kubus begrijpen (via het beeld van een aantal gelijke lagen), kennen en gebruiken

MR59 Inzien dat het volume van een cilinder berekend kan worden naar analogie met de berekening van het volume van een balk en van daaruit de inhoud van een cilinder berekenen

MR60 Inzien dat ook ruimtefiguren met een gebogen of grillige vorm een volume hebben en dat bij benadering bepalen (bijv. door omstructurering, door onderdompeling)

3.2.3.4 GEWICHT

MR61 Weten dat het resultaat van een gewichtsmeting uitgedrukt kan worden in kilogram of daarvan afgeleide maateenheden, en daarbij de term gewicht gebruiken

MR62 Het metriek stelsel in verband met gewichten opbouwen, en daarbij volgende maateenheden lezen en gebruiken:
a) het kilogram (kg)
b) het gram (g)
c) de ton

MR63 Het gewicht van allerlei gebruiksvoorwerpen bepalen (bijv. een pakje koffie, een zakje aardappelen...) en een bepaald gewicht afwegen

MR64 Ervaren en inzien dat het gewicht van dingen niet enkel bepaald wordt door het volume

MR65 Het verband inzien tussen inhoudsmaten, ruimtematen en gewicht (bijv. 1 liter water heeft een volume van $1 \mathrm{dm}^{3}$ en weegt 1 kg)

3.2.3.5 TIJDSTIP EN TIJDSDUUR

MR66 Volgende termen gebruiken:
a) de dagen van de week
b) vandaag, gisteren, morgen...
c) de maanden van het jaar
d) eergisteren, overmorgen...
e) het aantal dagen van de maanden kennen
f) een jaar (365 dagen), een schrikkeljaar en een eeuw
g) trimester, kwartaal, semester

MR67 De datum lezen en noteren:
a) voluit (bijv. 29 mei 1997)
b) op verschillende wijzen (bijv. 1997-05-29)

MR68 Weten dat een tijdstip en een tijdsduur uitgedrukt kan worden in uur of daarvan afgeleide maateenheden, en volgende termen en afkortingen lezen en gebruiken:
a) het uur en het halfuur
b) het kwartier
c) de minuut (min.)
d) de seconde (sec.)

MR69 De tijd aflezen en aanduiden, de tijd noteren en tijdsaanduidingen lezen en correct interpreteren:
a) op een analoge klok:

- tot op een uur en een halfuur nauwkeurig
- tot op een kwartier nauwkeurig
b) op een analoge en een digitale klok
- tot op één minuut nauwkeurig
(bijv. 5 over halfdrie; 10 voor twee; 5 voor halfvijf, 16 uur 05 min . of 16.05 uur of in een dienstregeling 16.05)
- tot op één seconde nauwkeurig

MR70 Tijdsduur berekenen:
a) op een kalender in dagen binnen de periode van een week
b) in dagen en/of maanden en/of jaren
(bijv. het aantal dagen berekenen van ... tot (en met) ... of tussen...)
c) in uren en/of minuten en/of seconden
(bijv.: Er zijn nog 42 min . van 2.18 uur tot 3 uur)

3.2.3.6 GELDWAARDEN

MR71 Weten dat een geldwaarde uitgedrukt kan worden in euro of daarvan afgeleide maateenheden,
daarbij de termen geld, waarde, prijs, euro, cent ... gebruiken,
a) de in omloop zijnde muntstukken en bankbiljetten benoemen en onderscheiden
b) volgende afkortingen/symbolen lezen en noteren:

- euro, $€$
- EUR
c) en geldwaarden op verschillende wijzen noteren (bijv. 0,50 euro of 0,50 of 0,50 EUR of 50 cent)

MR72 Betalen, wisselen, teruggeven

3.2.3.7 TEMPERATUUR

MR73 Weten dat een temperatuur uitgedrukt kan worden in graden Celsius, daarbij de term temperatuur gebruiken, en weten dat:
a) bij temperatuurmeting $0{ }^{\circ} \mathrm{C}$ het vriespunt aangeeft
b) bij temperaturen beneden het vriespunt negatieve getallen gebruikt worden

MR74 De temperatuur tot op $1{ }^{\circ} \mathrm{C}$ nauwkeurig meten, aflezen en noteren

3.2.3.8 HOEKGROOTTE

MR75 Weten dat het resultaat van de meting van de hoekgrootte uitgedrukt kan worden in graden, daarbij de term graad gebruiken, de graad kennen als het negentigste deel van een rechte hoek
en zijn symbool $\left({ }^{\circ}\right)$ lezen en noteren
MR76 Met een geodriehoek hoeken vergelijken
MR77 Met een geodriehoek hoeken meten en tekenen tot op 1° nauwkeurig

3.2.4 TOEPASSINGEN

Noot vooraf: Voor de doelstellingen over probleemoplossende vaardigheden verwijzen we naar de domeinoverschrijdende doelen.

MR78 Het gemiddelde van meetresultaten berekenen en weten wanneer dat zinvol is

MR79 In betekenisvolle situaties weten wanneer een schatting (bijv. een huiskamer is ongeveer $2,5 \mathrm{~m}$ hoog) of een benaderende aanduiding (bijv. het gewicht van iemand wordt uitgedrukt in kg niet in gram) zinvoller is dan een precieze meting of een exacte berekening

MR80 Indirect meten (bijv. 20 min . wandelen als antwoord op de vraag hoe ver het is)

MR81 Kennis maken met minder gebruikelijke meetinstrumenten (bijv. een weeghaak, een meetwiel)

MR82 Tabellen (bijv. spoorboekje, de dienstregeling van de bus, een televisiegids), grafieken en diagrammen (staaf- en cirkeldiagram) lezen en correct interpreteren

MR83 Meetresultaten in tabellen, grafieken en staafdiagrammen verwerken

MR84 Bij meetkundige voorstellingen verhoudingen vaststellen en vergelijken (bijv. Hoeveel keer is de pen op de foto kleiner dan in werkelijkheid?)

MR85 De begrippen en termen schaal, lijnschaal en breukschaal kennen en met voorbeelden uitleggen wanneer die begrippen gebruikt kunnen worden

MR86 Allerlei verbanden, patronen en structuren tussen en met grootheden en maatgetallen opsporen en onderzoeken

MR87 Inzien dat bij het gelijkvormig vergroten of verkleinen van een oppervlakte twee afmetingen, en van een volume drie afmetingen een rol spelen (bijv. een vierkant met zijden van 3 cm heeft een oppervlakte van $9 \mathrm{~cm}^{2}$, een vierkant met zijden van 6 cm heeft een oppervlakte van $36 \mathrm{~cm}^{2}$, een kubus met ribben van 1 cm heeft een volume van $1 \mathrm{~cm}^{3}$, een kubus met ribben van 2 cm heeft een volume van $8 \mathrm{~cm}^{3}$)

MR88 Vraagstukken over één grootheid oplossen: lengte, oppervlakte, inhoud, volume, gewicht, tijd, geldwaarden, temperatuur en hoekgrootte

MR89 In veel voorkomende situaties de relaties tussen grootheden ervaren en onderzoeken bij:
a) prijsberekeningen
b) winst of verlies
c) tijd, afstand, snelheid
d) sparen
e) korting
f) kapitaal en enkelvoudige interest
g) soortelijk gewicht

MR90 Resultaten van metingen zoals bevolkingsdichtheid, windkracht, neerslag, stijgingspercentage van de weg, verkeersintensiteit, kijkdichtheid, leesvaardigheid, populariteit... begrijpen

4.1 INLEIDING

Vier rubrieken

Relatie met andere doelen
De doelen en leerinhouden voor het leerdomein meetkunde zijn in vier grote rubrieken geordend.

1 Ruimtelijke oriëntatie
De verkenning van de ruimte door de kinderen staat centraal bij de ruimtelijke oriëntatie. Ze onderzoeken de ruimte die hen omringt met een 'meetkundig oog'. Hun ervaringen leren ze schematisch weergeven en wat schematisch gegeven is, leren ze interpreteren.

2 Vormleer

Via verkenning van figuren (vlakke en ruimtelijke) en voorwerpen worden de belangrijkste meetkundige begrippen verworven. Omdat we ervoor kiezen uit te gaan van de ervaringen van kinderen, beginnen we met de verkenning van de vertrouwde figuren zoals het vierkant en de rechthoek. Om dezelfde reden wordt onder meer de classificatie van drie- en vierhoeken pas in de derde graad aangeleerd.

3 Meetkundige relaties
Hier worden de doelen beschreven die te maken hebben met evenwijdigheid, loodrechte stand, symmetrie, gelijkheid van vorm en grootte en gelijkvormigheid.

4 Toepassingen
Hier worden enerzijds doelen beschreven die erop gericht zijn de gebruikswaarde van de verworven meetkundige begrippen en inzichten te verhogen door ze in zinvolle toepassingen te integreren. Anderzijds worden er doelen vermeld om kinderen bijkomende meetkundige ervaringen te laten opdoen met vervormen, kijklijnen, schaduwbeelden enz.

De doelen voor meetkunde hangen samen met onder meer doelen voor meten en metend rekenen (Bijvoorbeeld de aspecten lengte, oppervlakte en inhoud/volume).

4.2 Doelen en leerinhouden

4.2.1 RUimtelijke oriëntatie

MK1 Ervaringen opdoen in verband met omsluiting en ze verwoorden met termen als: in, uit, binnen, buiten, open, gesloten, tussen, rondom...

MK2 Een patroon in een rij herkennen en die rij voortzetten
en verwoorden met termen als: eerste, tweede, middelste, voorlaatste, laatste...

MK3 De positie verkennen en bepalen:
a) van voorwerpen in de ruimte tegenover zichzelf
b) van zichzelf tegenover referentiepunten in de ruimte
c) van voorwerpen tegenover elkaar en daarbij de positie verwoorden met termen als:
d) op, naast, voor, achter, boven, onder, op elkaar...
e) ver weg, dicht bij, tegen, tegenover...
f) links, rechts

MK4 De richting van de beweging verkennen en bepalen:
a) van zichzelf
b) van voorwerpen tegenover zichzelf
c) van zichzelf tegenover referentiepunten in de ruimte
d) van voorwerpen in de ruimte tegenover andere voorwerpen
en daarbij de zin van de beweging verwoorden met termen als:
e) omhoog, omlaag, vooruit, achteruit...
f) naar mij toe, van mij weg, dichterbij komen, opzij, langs, door, over...
g) in de richting van, schuin...

MK5 De plaats en/of de richting precies bepalen vanuit een referentiepunt (bijv. het tweede appartement van links op de derde verdieping)

MK6 Verkennen en verwoorden wat men ziet vanuit andere gezichtspunten als men zich:
a) werkelijk verplaatst in de ruimte
b) mentaal verplaatst in de ruimte
en daarbij termen gebruiken als:
c) richting, plaats...
d) vooraanzicht, zijaanzicht, bovenaanzicht...

MK7 De relatie leggen tussen driedimensionale situaties en hun voorstellingen om zich te oriënteren in de ruimte met:
a) tekeningen, foto's, maquettes, plattegronden
b) kaarten, gegevens over afstand en richting en daarbij termen gebruiken als:
c) afstand...
d) patroon, plattegrond...

MK8 Pictogrammen die onder meer een richting aanduiden, lezen en gebruiken

4.2.2 VORMLEER

4.2.2.1 PUNTEN, LIJNEN EN VLAKKEN

MK9 Punten, lijnen en oppervlakken ervaren, ontdekken en herkennen door zich te bewegen in de ruimte, te kijken naar en te handelen met voorwerpen en meetkundige figuren en daarbij termen gebruiken (zonder ze te definiëren) als:
a) recht, gebogen (krom), gebroken...
b) vorm
c) oppervlak, lijn, punt, lijnstuk,
d) rechte
e) horizontaal, verticaal...
f) vlak, vlakke figuur

MK10 Een punt, een rechte en een lijnstuk tekenen en noteren (bijv. rechte a, punt A, lijnstuk $[\mathrm{AB}]$)

MK11 Volgende punten, lijnen en oppervlakken herkennen en benoemen:
a) zijde, overstaande zijde(n), omtrek, hoogte, basis
b) diagonaal
c) straal, middelpunt
d) diameter
e) zijvlak, bovenvlak, grondvlak

4.2.2.2 HOEKEN

MK12 Het begrip hoek ervaren, ontdekken en herkennen door zich te bewegen in de ruimte, te kijken naar en te handelen met voorwerpen en meetkundige figuren en die ervaringen verwoorden (bijv. puntig, afgerond)

MK13 Bij vlakke hoeken volgende termen correct gebruiken (zonder ze te definiëren):
a) hoek, hoekpunt, benen
b) overstaande hoeken in vierhoeken
en rechte, stompe en scherpe hoeken:
c) herkennen en benoemen
d) tekenen
e) noteren (bijv. BÂC)
f) classificeren

4.2.2.3 Vlakke figuren

MK14 Meetkundige vormen onderzoeken en globaal herkennen door zich: te bewegen in de ruimte, te kijken naar
en te handelen (bijv. beleggen, puzzelen, vouwen, knippen, tekenen, rubriceren)

- met voorwerpen uit de omgeving
(bijv. natuur, huizen, wegen, gebruiksvoorwer-
pen, kunstproducten)
- en met vlakke figuren
en daarbij termen gebruiken als: rond, driehoekig, vierhoekig...

MK15 Vlakke figuren vergelijken en classificeren volgens zelfgekozen kenmerken

MK16 Bij vierhoeken de eigenschappen van de zijden (evenwijdigheid en gelijke lengte) en de hoeken (soorten hoeken en gelijke grootte) onderzoeken (leggen, vouwen, knippen...) en verwoorden en de vierhoeken benoemen met de termen:
a) vierkant, rechthoek
b) ruit, parallellogram, trapezium

MK17 Vierhoeken tekenen:
a) vierkant, rechthoek
b) ruit, parallellogram, trapezium

MK18 De diagonalen van vierhoeken tekenen en de eigenschappen ervan (even lang, snijden elkaar middendoor, snijden elkaar loodrecht) onderzoeken en verwoorden:
a) vierkant, rechthoek
b) ruit, parallellogram, trapezium

MK19 Vierhoeken:
a) vergelijken volgens de eigenschappen van zijden en hoeken
b) classificeren volgens toenemend of afnemend aantal eigenschappen

MK20 Bij driehoeken de eigenschappen van de zijden (gelijke lengte) en de hoeken (soorten hoeken en gelijke grootte) onderzoeken (leggen, vouwen, knippen...) en verwoorden en de driehoeken benoemen (gelijkbenige, ongelijkbenige, gelijkzijdige, scherphoekige, rechthoekige, stomphoekige)

MK21 Driehoeken tekenen
MK22 Driehoeken:
a) vergelijken volgens de eigenschappen van zijden en hoeken
b) classificeren

MK23 Cirkels herkennen en benoemen, de eigenschap van de cirkel (elk punt van de omtrek van een cirkel ligt evenver van het middelpunt) onderzoeken (meten, vouwen, knippen...) en verwoorden en een cirkel tekenen met een passer

MK24 De veelhoeken onder vlakke figuren aanwijzen:
a) op basis van het aantal zijden en daarbij termen gebruiken als: driehoek, vierhoek, vijfhoek, zeshoek..., veelhoek
b) op basis van de zijden en de hoeken en daarbij de term regelmatige veelhoek (veelhoek waarvan alle zijden gelijk zijn en waarvan alle hoeken gelijk zijn) gebruiken

MK25 Vlakke figuren omstructureren (opdelen in en/of omvormen naar gekende vlakke figuren)

4.2.2.4 RUIMTEFIGUREN

MK26 Meetkundige vormen onderzoeken en globaal herkennen door te kijken naar en te handelen met voorwerpen uit de omgeving (natuur, huizen, gebruiksvoorwerpen, kunstproducten, enz.) en daarbij termen gebruiken als: plat, recht, rond, gebogen, hoekig...

MK27 Op basis van hun eigenschappen de volgende ruimtefiguren herkennen en daarbij volgende termen gebruiken: veelvlak (kubus, balk, piramide), bol, cilinder en kegel

4.2.3 Meetkundige relaties

4.2.3.1 Evenwijdigheid

MK28 Evenwijdigheid ontdekken:
a) in de omgeving
b) in vlakke figuren en ruimtefiguren
c) als het resultaat van verschuivingen
mK29 Evenwijdige en snijdende rechten en lijnstukken herkennen, benoemen en daarbij gebruik maken van de termen evenwijdig en snijdend
mK30 Met een geodriehoek en andere hulpmiddelen (geen passer):
a) twee evenwijdige rechten/lijnstukken tekenen
b) door een punt buiten een rechte/lijnstuk de/het evenwijdige rechte/lijnstuk tekenen aan die/dat rechte/lijnstuk
mK31 Het symbool van de evenwijdigheid (//) lezen en noteren

4.2.3.2 LOODRECHTE STAND

MK32 Loodrechte stand ontdekken:
a) in de omgeving
b) in vlakke figuren en ruimtefiguren

MK33 Rechten en lijnstukken die loodrecht op elkaar staan, herkennen, benoemen en daarbij gebruik maken van de term loodrecht

MK34 Met een geodriehoek en andere hulpmiddelen (geen passer):
a) twee lijnstukken/rechten tekenen die elkaar loodrecht snijden
b) de loodlijn tekenen door een punt buiten een rechte/lijnstuk op die/dat rechte/lijnstuk
c) de loodlijn tekenen in een punt van een rechte/lijnstuk op die/dat rechte/lijnstuk

MK35 Het symbool van de loodrechte stand (\perp) lezen en noteren

4.2.3.3 SyMMETRIE

MK36 Spiegelbeelden ontdekken in de omgeving en in vlakke figuren:
a) door een spiegel te gebruiken, door te vouwen
b) door te meten
en daarbij de termen spiegelbeeld, spiegeling en spiegel(as) gebruiken

MK37 Symmetrie en asymmetrie ontdekken:
a) in de omgeving
b) in vlakke figuren
en symmetrie ontdekken als het resultaat van een spiegeling,
symmetrieassen ontdekken
en daarbij de termen symmetrie, symmetrisch en symmetrieas gebruiken

MK38 Op geruit papier tekenen:
a) eenvoudige symmetrische figuren
b) spiegelbeelden van eenvoudige figuren

4.2.3.4 GELIJKHEID VAN VORM ÉN GROOTTE (congruentie) EN GELIJKVORMIGHEID

MK39 Gelijkheid van vorm én grootte ontdekken en verwoorden
a) in de omgeving
b) in vlakke figuren

MK40 Eenvoudige figuren van gelijke vorm én grootte tekenen op geruit papier

MK41 Gelijkvormigheid ontdekken en verwoorden:
a) in de omgeving
b) in vlakke figuren

MK42 Eenvoudige gelijkvormige figuren tekenen op geruit papier

4.2.4 TOEPASSINGEN

Noot vooraf: Voor de doelstellingen over probleemoplossende vaardigheden verwijzen we naar de domeinoverschrijdende doelen.

MK43 Figuren vervormen (bijv. uitrekken, inkrimpen) en de vervormingen verwoorden

MK44 Constructies uitvoeren met voorschriften op foto of tekening (bijv. constructieplan bij bouwdoos, ontwikkeling van kubus, een plattegrond) of met verbaal gegeven voorschriften

MK45 In een concrete situatie oplossingen vinden voor een ruimtelijk probleem

MK46 Werken met schaduwbeelden en ze verklaren
mK47 Kijklijnen:
a) ervaren in de werkelijkheid
b) aangeven op een schets of een foto
c) gebruiken om de plaats van de waarnemer te bepalen

MK48 Bij tekenopdrachten een efficiënte werkwijze en geschikte hulpmiddelen (bijv. geodriehoek, passer, meetlat...) kiezen en gebruiken

MK49 Patronen herkennen in complexe figuren (bijv. in behangpapier)

MK50 Zelf geschikte hulpmiddelen maken bij meetkundige activiteiten (bijv. een rechte hoek vouwen uit een blad papier)

MK51 Eigenschappen van meetkundige figuren en van ruimtefiguren gebruiken, om vraagstukken op te lossen

MK52 Bij een opdracht bepalen wanneer een vlugge werkschets en/of een nauwkeurige tekening wenselijk en bruikbaar is
mK53 Vlakke figuren tekenen volgens een gegeven verhouding

5 DOMEINOVERSCHRIJDENDE DOELEN

5.1 InLEIDING

Wiskundige problemen leren oplossen

Geleidelijk aan gerealiseerd Domeinoverschrijdende doelen kunnen met kinderen slechts geleidelijk aan gedurende hun hele onderwijsloopbaan worden bereikt.
In het kleuteronderwijs ondersteunt de leerkracht de kinderen om zich bewust te worden van bepaalde deelvaardigheden en houdingen. Naar het einde van het lager onderwijs krijgen kinderen, onder begeleiding van de leerkracht, iets meer zicht op hun vaardigheden, strategieën en van de leerkracht, iets meer zicht op hun vaardigheden, strategieen en
houdingen. En zelfs dan nog blijven er grote verschillen in de mogelijkheden en de ontwikkelingslijnen van kinderen.
Zelfs voor adolescenten en volwassenen is het een blijvende opdracht aan die vaardigheden, strategieën en houdingen te sleutelen.

Om die redenen is het onbegonnen werk aan te geven op welke momenten in hun ontwikkeling kinderen bepaalde doelen kunnen realiseren.
Daarom worden bij onderstaande doelen geen aanduidingen per leeftijdsten in hun ontwikkeling kinderen bepaalde doelen kunnen realiseren.
Daarom worden bij onderstaande doelen geen aanduidingen per leeftijdsgroep/leerjaar opgenomen. De leerkracht neemt die doelen beter als aandachtspunten mee.

De domeinoverschrijdende doelen zijn in drie grote rubrieken geordend.
1 Wiskundige problemen leren oplossen
2 Wiskundige leertaken leren aanpakken
3 Leren communiceren over wiskunde
Zoals in de vorige hoofdstukken beschreven werd, moeten kinderen een brede waaier van wiskundige doelen bereiken en wiskundige leerinhouden verwerven en verwerken. Daartoe dienen ze over doeltreffende vaardigheden, strategieën en attitudes te beschikken. Die gelden voor de verschillende leerdomeinen van het leergebied wiskunde. Omdat die vaardigheden, strategieën en attitudes de leerdomeinen overschrijden, noemen we ze domeinoverschrijdende doelen. Die doelen worden in dit hoofdstuk beschreven.

Bij wiskunde worden kinderen dikwijls voor relatief complexe situaties geplaatst. Die verschillen in én of meer aspecten van de gekende, vertrouwde situaties. Daardoor kunnen kinderen niet onmiddellijk het juiste antwoord of de geschikte oplossingsweg geven. Met andere woorden, ze staan voor een probleem (bijv.: In de kleuterschool: Hoe schik je de dozen het best opdat je zoveel mogelijk dozen in die kist kunt opbergen? Hoe bouw je een dak op een huisje als je onvoldoende lange latjes hebt? In de lagere school: Een opgave als $5 \mathrm{x} .=35$ of een vraagstuk over de recht-evenredige verdeling). Of een situatie een probleem is hangt onder meer af van de vakinhoudelijke kennis die een kind verworven heeft.
In de eerste rubriek wordt ingegaan op het leren oplossen van zulke wiskundige problemen.

Wiskundige leertaken leren aanpakken

Leren communiceren over wiskunde

Daarnaast krijgen kinderen in de lagere school wiskundige leertaken. Dat zijn opdrachten om wiskunde te leren en te studeren (bijv. de eigenschappen van een vierhoek vastzetten, een toets voorbereiden).
De leerkracht vindt er, in algemene termen, aanduidingen over wat kinderen moeten kennen en kunnen om wiskundige leertaken te leren aanpakken. In de tweede rubriek wordt ingegaan op het leren aanpakken van wiskundige leertaken.

Net zoals binnen andere leergebieden speelt ook communicatie een belangrijke rol bij het wiskundeleren. Ze heeft een motiverend effect en leidt tot een toenemende bewustwording en verbetering van de verstandelijke prestaties.
Onder de derde rubriek worden de doelen en de leerinhouden beschreven die belangrijk zijn om te leren communiceren over wiskunde.

Bij het overzicht van de leerdomeinen binnen wiskunde (zie deel 1, hoofdstuk 9) is al aangegeven dat dit hoofdstuk van een andere aard is dan de hoofdstukken over getallenkennis, bewerkingen, meten en metend rekenen en meetkunde. De doelen en de leerinhouden die in dit hoofdstuk beschreven worden, moeten worden nagestreefd binnen de activiteiten en lessen over de genoemde leerdomeinen. Wat niet wegneemt dat binnen bepaalde activiteiten en lessen die doelen en leerinhouden heel expliciet aandacht kunnen krijgen.

5.2 Doelen en leerinhouden

5.2.1 Wiskundige problemen leren oplossen

DO1 Een algemene strategie voor het vaardig oplossen van wiskundige problemen kennen, flexibel aanwenden (dat wil zeggen dat de stappen in de tijd niet noodzakelijk op elkaar volgen) en verwoorden

Dat houdt in:
a) zich een goede voorstelling maken van het probleem
b) bepalen hoe het probleem het beste wordt aangepakt (een oplossingsplan opstellen) en de gekozen oplossingswijze rechtvaardigen
c) het oplossingsplan uitvoeren en zichzelf daarbij controleren
d) de uitkomst(en) interpreteren en een voorlopig antwoord formuleren op het probleem
e) de verschillende stappen van het oplossingsproces controleren en bijsturen, en het antwoord op zijn zinvolheid, zijn realiteitswaarde en zijn volledigheid beoordelen en verbeteren

DO2 Zoekstrategieën ontwikkelen
Dat kan onder meer betekenen:
a) de situatie op een eigen manier weergeven (dramatiseren, tekenen...)
b) de probleemstelling in eigen woorden navertellen of verkort weergeven
c) door bij een gegeven situatie aansluitende wiskundige vragen te formuleren een goed zicht krijgen op wat er gegeven is, wat er gezocht moet worden en wat de relaties zijn tussen de gegevens onderling en tussen de gegevens en het gevraagde
d) noodzakelijke en overbodige informatie onderscheiden
e) ontbrekende informatie opzoeken
f) een tekening, een schema of een schets van de probleemsituatie maken of een tabel maken met de gegevens
g) een probleem opsplitsen in deelproblemen
h) een hypothese formuleren en toetsen
i) een element voorlopig buiten beschouwing laten
j) moeilijke gegevens uit de situatie vervangen door eenvoudige

DO3 Nadenken over zijn eigen oplossingsproces en dat proces sturen
Dat kan onder meer betekenen:
a) nagaan of bepaalde kennis en heuristieken die je al beheerst, aangewend kunnen worden (bijv. Bestaat er een regel? Welke soort oefening is dat en wat hebben we daarover al geleerd?)
b) tijdens de uitvoering van een plan nagaan of een bepaalde stap iets oplevert
c) tijdens de uitvoering van een oplossingsplan, nagaan of dat plan efficiënt is
d) de oorzaak van fouten, haperingen of het vlotte verloop van het oplossingsproces onderzoeken, alleen of in samenspraak met anderen
e) nadenken over correcte en onjuiste oplossingen en oplossingswijzen van jezelf of iemand anders

DO4 Doeltreffende opvattingen over en houdingen tegenover het oplossen van wiskundige problemen, ontwikkelen

Dat kan onder meer betekenen:
a) ervan overtuigd zijn dat er voor wiskundige problemen soms meer dan één correcte oplossingsweg en oplossing is
b) een probleemstelling als een uitdaging opvatten
c) plezier beleven aan het zoeken naar oplossingen
d) volhouden bij het zoeken naar oplossingen

5.2.2 WISKUNDIGE LEERTAKEN LEREN AANPAKKEN

D05 Wiskundige leertaken doelgericht en planmatig aanpakken, eventueel onder begeleiding
Dat kan onder meer betekenen:
a) rekening houden met de eigenheid van de leertaak: wiskundige informatie (selectief) herhalen (herhaalstrategie), vaardigheden oefenen, de elementen verbaal of visueel met elkaar verbinden (elaboratiestrategie), elementen markeren (markeringsstrategie) en schematiseren, elementen memoriseren (al dan niet met behulp van mnemotechnische middelen)
b) voorkennis activeren (nieuwe zaken in verband brengen met wat je al kent)
c) nagaan of er achter de verschillende gegevens iets gemeenschappelijks zit (een overkoepelend begrip, een logische relatie, een principe of wetmatigheid, een uitdrukking)

DO6 Nadenken over en verwoorden hoe men te werk gaat om wiskundige leertaken aan te pakken
Dat kan onder meer betekenen:
a) onderscheid maken tussen wat men kent en niet kent, tussen wat men begrijpt en niet begrijpt
b) zich bewust zijn van de mogelijkheden en beperkingen van de eigen cognitieve bekwaamheden (bijv. beseffen dat het geheugen feilbaar is)
c) leren uit fouten (bijv. Vermijden zo maar direct aan de slag te gaan) en uit succes (bijv. Iets moeilijks wordt gemakkelijker door aan een voorbeeld of een tegenvoorbeeld te denken)

D07 Doeltreffende opvattingen over en houdingen ontwikkelen tegenover wiskunde-leren
Dat kan onder meer betekenen:
a) beseffen dat iedereen enige wiskundige bekwaamheid kan verwerven
b) ervan overtuigd zijn dat wiskunde meer is dan een stel regels en procedures die gememoriseerd moeten worden
c) beseffen dat wiskunde veel met het reële leven te maken heeft en van praktisch nut is in de maatschappij
d) beseffen dat de kennis, inzichten, vaardigheden en houdingen die tijdens de wiskundelessen geleerd werden, ook in andere lessen en in buitenschoolse probleemsituaties hun toepassing vinden (transfer van het leerresultaat)
e) erop gericht zijn zichzelf vragen te stellen, niet te vlug denken dat men iets beheerst
f) bij momenten van twijfel niet aan zichzelf en zijn capaciteiten twijfelen
g) de oorzaak van falen en slagen ook bij zichzelf zoeken in plaats van bij anderen
h) waardering opbrengen voor wiskunde als dimensie van menselijke inventiviteit
i) zelfvertrouwen ontwikkelen inzake wiskunde, zowel op school als daarbuiten
j) nauwkeurig werken en de taken volgens afspraak uitvoeren
k) efficiënt leren door het materiaal klaar te leggen voor de opdracht en het efficiënt te gebruiken

1) niet te vlug denken dat je de leerstof niet onder de knie zult krijgen en ze dan maar uit het hoofd leren

5.2.3 LEREN COMMUNICEREN OVER WISKUNDE

D08 In wiskundige situaties samenwerken en communiceren met anderen
Dat kan onder meer betekenen:
a) onderling overleggen bij het oplossen van een wiskundig probleem
b) afspraken maken en naleven bij groepswerk
c) verslag uitbrengen over de aanpak van een wiskundig probleem
d) andere leerlingen helpen wiskundige opgaven op te lossen

DO9 De communicatieve functie van wiskundige taal ervaren
Dat kan onder meer betekenen
a) wiskundige gegevens of resultaten visualiseren, symboliseren, noteren of verwoorden, begrijpen, interpreteren en verwerken
b) wiskundige begrippen en termen begrijpen en correct gebruiken
c) beseffen dat een correcte wiskundige taal belangrijk is om elkaar te begrijpen

DO10 Nadenken over communicatie bij wiskunde
Dat kan onder meer betekenen:
a) nagaan of je de ander wel goed begrijpt en of de ander je begrijpt
b) bedenkingen formuleren over de positieve en negatieve aspecten van het in groep oplossen van wiskundige problemen

D011 Doeltreffende opvattingen over en houdingen tegenover communicatie bij wiskunde ontwikkelen
Dat kan onder meer betekenen:
a) beseffen dat je ook heel wat kunt opsteken wanneer je naar medeleerlingen luistert en wanneer je uitleg geeft aan 'jezelf' of aan andere leerlingen
b) beseffen dat uit de toelichtingen en fouten van anderen veel te leren valt
c) kritisch luisteren en een kritische houding ontwikkelen tegenover allerlei cijfermateriaal, tabellen, berekeningen waarvan bewust of onbewust gebruik (misbruik) gemaakt wordt om mensen te informeren, te overtuigen, te misleiden
d) voor de eigen mening opkomen
e) met een houding van openheid van elkaar leren
f) bereid zijn de afspraken over de taakverdeling bij groepswerk te respecteren

DEEL 3: BIJLAGEN

1 Concordantie

MET DE ONTWIKKELINGSDOELEN EN EINDTERMEN

Bij de verwijzingen naar de leerplandoelen worden volgende afkortingen gebruikt:

- AD: Algemeen doel
- G: Getallenkennis
- B: Bewerkingen
- MR: Meten en metend rekenen
- MK: Meetkunde
- DO: Domeinoverschrijdende doelen

Elke afkorting wordt gevolgd door het nummer van het doel en eventueel een kleine letter voor de onderverdeling van het doel.

Eindtermen voorafgegaan door een asterisk (*) zijn attitudinale eindtermen.

ONTWIKKELINGSDOELEN WISKUNDIGE INITIATIE

1 Wiskundige initiatie - getallen

De kleuters kunnen:
1.1 handelend en verwoordend de ene concrete hoeveelheid dingen vergelijken met een andere hoeveelheid dingen. Bij het verwoorden gebruiken zij daarbij de passende hoeveelheidsbegrippen. (evenveel/niet evenveel dingen, veel/weinig dingen, dingen over/dingen te kort, meer/minder, meest/minst dingen).
1.2 met aanwijzing vijf dingen correct (simultaan) tellen en daarna
G4a, G5, G9a zeggen hoeveel dingen er geteld zijn (resultatief).

G1a, G1b
1.3 een rangorde (tot vijfde) aanduiden en verwoorden (ordinaal tellen) als begin en richting zijn afgesproken.
1.4 in concrete situaties rekenhandelingen uitvoeren met betrekking tot aantal en hoeveelheid. Zij kunnen deze handelingen verwoorden door de gepaste begrippen te hanteren (evenveel maken, bijdoen, wegdoen, samentellen, vermeerderen, verminderen, verdelen).
1.5 door handelend en verwoordend te vergelijken, aangeven dat er een G8 bepaalde hoeveelheid dingen dezelfde blijft, hoe ze ook geplaatst of geordend zijn in de ruimte.

2 WISkundige initiatie - METEN

De kleuters kunnen:

| 2.1 | handelend en verwoordend twee dingen op hun kwalitatieve eigen-
 schap vergelijken. | MR1, MR2 |
| :--- | :--- | :--- | :--- |
| 2.2 | dingen kwalitatief vergelijken en samenbrengen op basis van één of
 twee gemeenschappelijke kenmerken. | MR5 |
| 2.3 | dingen rangschikken volgens de toenemende of afnemende mate van
 een welbepaald kwalitatief kenmerk. | MR6 |
| 2.4 | in concrete situaties handelingen uitvoeren met vormen, grootheden
 en figuren, in functie van een kwalitatief kenmerk. | MR4 |
| 2.5 | handelend en verwoordend, aangeven dat een bepaalde grootheid
 (lengte, inhoud, volume, gewicht, oppervlakte) van een ding dezelf-
 de blijft, hoe dit ook geplaatst of geordend is in de ruimte. | MR3 |

2.6 bij benadering een voorwerp "meten" met een zelfgekozen maateen- MR7, MR8, MR14 heid.
2.7 verandering, beweging (snelheid) die ze met hun eigen lichaam ervaren of die ze bij voorwerpen, verschijnselen of bij andere mensen waarnemen, verwoorden.
2.8 bij vergelijking van twee voor hen bekende activiteiten en bij voldoende duidelijke verschillen, verwoorden welke activiteit het langst en welke het kortst duurt.
2.9 aan de hand van een kalender de dagen aftellen tussen het nu en een MR70a speciale gebeurtenis waarvan de dag is aangegeven binnen de periode van een week.

3 Wiskundige initiatie - RUIMTE (INITIATIE OP MEETKUNDE)

De kleuters kunnen:
3.1 handelend, in concrete situaties de begrippen "in, op, boven, onder, naast, voor, achter, eerste, laatste, tussen, schuin, op elkaar, ver weg, dicht bij, binnen, buiten, omhoog en omlaag" in hun juiste betekenis gebruiken. Zij kunnen pictogrammen in verband met "richtingen" als symbolen hanteren.
3.2 vanuit verschillende gezichtspunten die ze zelf concreet innemen, verwoorden hoe eenzelfde voorwerp, gebouw of persoon er telkens anders uitziet.
3.3 in een concrete situatie oplossingen vinden voor een ruimtelijk probleem.

MK1, MK2, MK3a, MK3b, MK3c, MK3d, MK3e, MK4, MK8

MK6a

MK44, MK45
3.4 vanuit een patroon een rij of een reeks dingen verder zetten. In het G38, MK2 patroon kunnen aantallen (beperkt tot 5) en/of kwalitatieve kenmerken (beperkt tot twee gemeenschappelijke) voorkomen.

EINDTERMEN WISKUNDE

1 Wiskunde - GETALLEN

BEGRIPSVORMING - WISKUNDETAAL - FEITENKENNIS

De leerlingen:
1.1 kunnen tellen en terugtellen met eenheden, tweetallen, vijftallen en machten van tien.
1.2 kunnen de verschillende functies van natuurlijke getallen herkennen en verwoorden.
1.3 kennen de betekenis van: optellen, aftrekken, vermenigvuldigen, delen, veelvoud, deler, gemeenschappelijke deler, grootste gemeenschappelijke deler, kleinste gemeenschappelijk veelvoud, procent, som, verschil, product, quotiënt en rest. Zij kunnen correcte voorbeelden geven en kunnen verwoorden in welke situatie ze dit handig kunnen gebruiken.
1.4 in voorbeelden herkennen dat breuken kunnen uitgelegd worden als: een stuk (deel) van, een verhouding, een verdeling, een deling, een vermenigvuldigingsfactor (operator), een getal (met een plaats op een getallenlijn), weergave van een kans. De leerlingen kunnen volgende terminologie hanteren: stambreuk, teller, noemer, breukstreep, gelijknamig, gelijkwaardig.
1.5 kunnen natuurlijke getallen van maximaal 10 cijfers en kommagetallen (met 3 decimalen), eenvoudige breuken, eenvoudige procenten lezen, noteren, ordenen en op een getallenlijn plaatsen.
1.6 kunnen volgende symbolen benoemen, noteren en hanteren: $=\neq$ $<>+-\mathrm{x} .: / \div \%$ en () in bewerkingen.
1.7 kunnen door het geven van een paar voorbeelden uit hun eigen leefwereld en in hun leermateriaal aantonen dat doorheen de geschiedenis en ook in niet-westerse culturen andere wiskundige systemen met betrekking tot getallen werden en worden beoefend.
1.8 kunnen gevarieerde hoeveelheidsaanduidingen lezen en interpreteren.
1.9 kunnen in gesprekken de geleerde symbolen, terminologie, notatiewijzen en conventies gebruiken.

G6

G9

G25, G30, G32, B2, B3a, B3b, B3c

G14, G15, G16d, G17b

G11a, G11b, G11c, G11d, G11e, G11f, G12, G15a, G16a, G16b, G16c, G21a, G22, G26

G1d, B3d, G15a, G26

AD6a, G33, G34

G29, G40a

AD1a, AD3a, G42, B3a
1.10 zijn in staat tot een onmiddellijk geven van correcte resultaten bij optellen en aftrekken tot 10 , bij tafels van vermenigvuldiging tot en met de tafels van 10 en de bijhorende deeltafels.
1.11 hebben inzicht in de relaties tussen de bewerkingen.

B9a, B12a, B17, B21

Procedures

De leerlingen:
1.12 kunnen orde en regelmaat ontdekken in getallenpatronen onder meer om te komen tot de kenmerken van deelbaarheid door $2,3,5$, 9, 10 en die te kunnen toepassen.
1.13 voeren opgaven uit het hoofd uit waarbij ze een doelmatige oplossingsweg kiezen op basis van inzicht in de eigenschappen van bewerkingen en in de structuur van getallen:

- optellen en aftrekken tot honderd;
- optellen en aftrekken met grote getallen met eindnullen;
- vermenigvuldigingen met en delen naar analogie met de tafels.
1.14 kunnen op concrete wijze de volgende eigenschappen van bewerkingen verwoorden en toepassen: van plaats wisselen, schakelen, splitsen en verdelen.
1.15 zijn in staat getallen af te ronden. De graad van nauwkeurigheid wordt bepaald door het doel van het afronden en door de context.
1.16 kunnen de uitkomst van een berekening bij benadering bepalen.
1.17 kunnen schatprocedures vinden bij niet exact bepaalde of niet exact te bepalen gegevens.
1.18 kunnen in eenvoudige gevallen de gelijkwaardigheid tussen kommagetallen, breuken en procenten vaststellen en verduidelijken door omzettingen.
1.19 kunnen de delers van een natuurlijk getal (≤ 100) vinden: zij kunnen van twee dergelijke getallen de (grootste) gemeenschappelijke deler(s) vinden.
1.20 kunnen de veelvouden van een natuurlijk getal (≤ 20) vinden, zij kunnen van twee dergelijke getallen het (kleinste) gemeenschappelijk veelvoud vinden.
1.21 zijn in staat in concrete situaties (onder meer tussen grootheden) eenvoudige verhoudingen vast te stellen, te vergelijken, hun gelijkwaardigheid te beoordelen en het ontbrekend verhoudingsgetal te berekenen.
1.22 kunnen eenvoudige breuken gelijknamig maken in functie van het optellen en aftrekken van breuken of in functie van het ordenen en het vergelijken van breuken.

G31, G39

B11a, B11b, B11e, B14a, B14b, B14e, B18, B22a, B30, B31, B32, B33, B34b

B4, B5, B6

G41, B53, B54, B55, MR84

G17a
1.23 kunnen in een zinvolle context eenvoudige breuken en kommagetallen optellen en aftrekken. In een zinvolle context kunnen zij eveneens een eenvoudige breuk vermenigvuldigen met een natuurlijk getal.
1.24 kennen de cijferalgoritmen. Zij kunnen cijferend vier hoofdbewerkingen uitvoeren met natuurlijke en met kommagetallen:

- optellen met max. 5 getallen: de som <10000000;
- aftrekken: aftrektal <10000000 en max. 8 cijfers,
- vermenigvuldigen: vermenigvuldiger bestaat uit max. 3 cijfers; het product $=$ max. 8 cijfers (2 cijfers na de komma);
- delen: deler bestaat uit max. 3 cijfers; quotiënt max. 2 cijfers na de komma.
1.25 kunnen eenvoudige procentberekeningen maken met betrekking tot praktische situaties.
1.26 kunnen de zakrekenmachine doelmatig gebruiken voor de hoofdbewerkingen (zie ook 1.28).
1.27 zijn in staat uitgevoerde bewerkingen te controleren, onder meer met de zakrekenmachine.
1.28 kunnen in contexten vaststellen welke wiskundige bewerkingen met betrekking tot getallen toepasselijk zijn en welke het meest aangewezen en economisch zijn.
* 1.29 zijn bereid verstandige zoekstrategieën aan te wenden die helpen bij het aanpakken van wiskundige problemen met betrekking tot getallen, meten, ruimtelijke oriëntatie en meetkunde.

2 Wiskunde - METEN

Begripsvorming-wiskundetail-FeItenkenns

De leerlingen:
2.1 kennen de belangrijkste grootheden en maateenheden met betrekking tot lengte, oppervlakte, inhoud, gewicht(massa) tijd, snelheid, temperatuur en hoekgrootte en ze kunnen daarbij de relatie leggen tussen de grootheid en de maateenheid.
2.2 kennen de symbolen, notatiewijzen en conventies bij de gebruikelijke maateenheden en kunnen meetresultaten op veelzijdige wijze noteren en op verschillende wijze groeperen.

B38, B39, B40, B41, B42, B43, B44, B45

B35, B56

B47

B46, DO1e

B52

DO2

MR17a, MR27, MR29a, MR36, MR50, MR53, MR61, MR68, MR73, MR75, MR89c

MR17, MR19, MR29, MR30, MR36, MR37, MR50, MR51, MR53, MR54, MR61, MR62, MR68, MR69, MR71, MR73, MR74, MR75, MR82, MR83

MR18
2.3 kunnen veel voorkomende maten in verband brengen met betekenisvolle situaties.
2.4 kunnen de functie van de begrippen "schaal" en "gemiddelde" aan

B57a, MR78, MR85 de hand van concrete voorbeelden verwoorden.
2.5 weten dat bij temperatuurmeting $0^{\circ} \mathrm{C}$ het vriespunt is en weten dat

MR73 de temperaturen beneden het vriespunt met een negatief getal worden aangeduid.

Procedures

De leerlingen kunnen:
2.6 allerlei verbanden, patronen en structuren tussen en met grootheden en maatgetallen inzien en ze kunnen betekenisvolle herleidingen uitvoeren.
2.7 met de gebruikelijke maateenheden betekenisvolle herleidingen uitvoeren.
2.8 schatten met behulp van referentiepunten.

MR18, MR20
2.9 op een concrete wijze aangeven hoe ze de oppervlakte en de omtrek van een willekeurige, vlakke figuur en van een veelhoek kunnen bepalen.

MR12, MR27, MR28, MR38, MR55, MR65, MR86

MR28

MR32, MR33, MR41, MR42, MR43, MR44, MR45, MR46, MR48,
2.10 concreet aangeven hoe de inhoud van een balk wordt bepaald.

MR49, MR58
2.11 in reële situaties rekenen met geld en geldwaarden.
2.12 kloklezen (analoge en digitale klokken). Zij kunnen tijdsintervallen berekenen en zij kennen de samenhang tussen seconden, minuten en uren.

MR72, MR88, MR89a, MR89b, MR89d, MR89e, MR89f

MR68, MR69, MR70

3 WISKUNDE - MEETKUNDE

BEGRIPSVORMING-WISKUNDETAAL-FEITENKENNIS

De leerlingen kunnen:
3.1 begrippen en notaties waarmee de ruimte meetkundig wordt bepaald aan de hand van concrete voorbeelden verklaren.

MK6c, MK6d, MK7c, MK7d, MK9, MK11, MK12, MK13, MK18, MK29, MK33, MK36, MK37, MK39, MK41, MK46, MK47
3.2 op basis van volgende eigenschappen de volgende meetkundige objecten herkennen en benoemen:
a) in het vlak: punten, lijnen, hoeken en vlakke figuren (driehoeken, vierhoeken, cirkels).

MK9, MK11, MK13a, MK13b, MK13c, MK16, MK19a, MK20, MK23, MK24a
b) in de ruimte: veelvlakken (kubus, balk, piramide) en bol en MK27 cilinder.
3.3 de symbolen van de loodrechte stand en van de evenwijdigheid

MK31, MK35 lezen en noteren.

Procedures

De leerlingen:
3.4 kunnen de verschillende soorten hoeken classificeren en de verschillende soorten vierhoeken classificeren op de grond van zijden en

MK13d, MK13f, MK17, MK19 hoeken. Zij kunnen deze ook concreet vormgeven.
3.5 kunnen met een passer een cirkel tekenen.

MK23
3.6 kunnen de begrippen symmetrie, gelijkvormigheid en gelijkheid ontdekken in de realiteit. Ze kunnen zelf eenvoudige geometrische MK37, MK38, MK39, MK40, MK41, MK42 figuren maken.
3.7 zijn in staat:

- zich ruimtelijk te oriënteren op basis van plattegronden, kaarten, foto's en gegevens over afstand en richting;

MK7

MK6b

4 WISKUNDE - STRATEGIEËN EN PROBLEEMOPLOSSENDE VAARDIGHEDEN

De leerlingen
4.1 kunnen met concrete voorbeelden aantonen dat er voor hetzelfde wiskundig probleem met betrekking tot getallen, meten, meetkundé en ruimtelijke oriëntatie, soms meerdere oplossingswegen zijn en soms zelfs meerdere oplossingen mogelijk zijn afhankelijk van de wijze waarop het probleem wordt opgevat.
4.2 zijn in staat om de geleerde begrippen, inzichten, procedures, met betrekking tot getallen, meten en meetkunde, zoals in de respectievelijke eindtermen vermeld, efficiënt te hanteren in betekenisvolle toepassingssituaties, zowel binnen als buiten de klas.
4.3 kunnen met concrete voorbeelden uit hun leefwereld aangeven welke de rol en het praktisch nut van wiskunde is in de maatschappij.

AD6b, DO4a

AD2, AD3, B49, B50, B51, B53b, B54, B55, B56, B58, B59, MR78, MR80, MR82, MR83, MR88, MR89, MR90, MK44, MK46, MK47, MK49, MK51, MK53, DO7d

AD6d,DO7c

5 Wiskunde - attitudes

De leerlingen:

* 5.1 brengen waardering op voor wiskunde als dimensie van menselijke DO7h
inventiviteit.
* 5.2 ontwikkelen een kritische houding ten aanzien van allerlei cijfermateriaal, tabellen, berekeningen waarvan in hun omgeving bewust of onbewust, gebruik (misbruik) gemaakt wordt om mensen te informeren, te overtuigen, te misleiden ...
* 5.3 ervaren dat bezig zijn met wiskunde een actief en een constructief proces is dan kan groeien en uitbreiden als gevolg van eigen denken leeractiviteiten; ze ontwikkelen bijgevolg de opvatting dat alle leerlingen wiskundige bekwaamheid kunnen verwerven die kan leiden naar studies en beroepen waarin wiskunde aan bod komt.
* 5.4 zijn bereid zichzelf vragen te stellen over hun aanpak voor, tijdens en na het oplossen van een wiskundig probleem en willen op basis hiervan hun aanpak bijsturen.

DO11c

AD6c, DO7a

AD5b, DO1e, DO3

2 Minimale materiële vereisten

Hieronder volgt een beschrijving van wat minimaal noodzakelijk wordt geacht om de doelstellingen van het leerplan op een verantwoorde wijze te kunnen realiseren.

- spelen (bijv. puzzels, klimrek, tangram)
- vindmateriaal (bijv. kastanjes, potten, doosjes)
- pictogrammen
- constructiemateriaal (blokken)
- plaatswaardemateriaal (bijv. honderdveld, M.A.B.-materiaal, abacus)
- getallenas
- zakrekenmachine
- de in omloop zijnde muntstukken en bankbiljetten (in Belgische frank/euro)
- tabellen, grafieken, staaf- en cirkeldiagrammen
- materiaal om te vergelijken zonder een maateenheid te gebruiken
- materiaal om te meten met natuurlijke maateenheden
- materiaal om zelf meetinstrumenten te maken
- gebruikelijke meetinstrumenten:
- om lengte te meten (meetlat, duimstok, meetlint)
- om inhoud te meten (een maatbeker)
- om het gewicht te bepalen (een balans, een weegschaal)
- om het tijdstip te bepalen en de tijdsduur te meten (analoge klok, digitale kiok, chronometer, kalender)
- om de hoekgrootte te meten (geodriehoek)
- om de temperatuur af te lezen (thermometer)
- vierkanten van $1 \mathrm{~m}^{2}, 1 \mathrm{dm}^{2}$ en $1 \mathrm{~cm}^{2}$
- gebruiksvoorwerpen:
- om lengte ervan te meten
- om de inhoud te meten (bijv. drinkglas, bierflesje, koffiekopje, soepbord, melkfles, lepel, emmer, flesje voor frisdranken...)
- om het gewicht te bepalen (bijv. een pakje koffie, een zakje aardappelen...)
- voorwerpen en meetkundige figuren om punten, lijnen en oppervlakken, hoeken te ervaren, te ontdekken en te herkennen
- vlakke figuren
- ruimtefiguren: kubus, balk, piramide, bol, cilinder, kegel
- spiegel
- geruit papier
- potlood
- passer
- schaar

3 BIBLIOGRAFIE

BOSSÉ, M.J.,
The NCTM Standards in Light of the New Math Movement: A Warning!
Journal of Mathematical Behavior, jaargang 14, 1995, blz. 171-201.
BROEKMAN, H., \& TERLINGEN, J.,
Het geheugen van de zakrekenmachine.
In: Willem Bartjens, jaargang 12, nummer 2, blz. 24-27.
BROEKMAN, H., VERMEULEN, W.
De zakrekenmachine de school in.
In: Panama-Post, jaargang 12, nummer 3, blz. 39-40.
CONSEIL CENTRAL DE L'ENSEIGNEMENT MATERNEL ET PRIMAIRE CATHOLIQUE, Programme Intégré.
Liège, C.C.E.M.P.C., 1994.
CARPAY, J. \& TERWEL, J., (Red.)
Curriculum, constructivisme en authentiek leren.
In: Pedagogisch Tijdschrift, jaargang 20, 1995, nummer 4/5.
CENTRALE RAAD VOOR HET KATHOLIEK LAGER ONDERWIJS,
Leerplan voor de basisschool. Wiskunde.
Brussel, C.R.K.L.O., 1981.
DE CORTE, E. et al.,
Groeien in onderwijzen 1.
Leuven, Wolters, 1988.
DE CORTE, E. et al.,
Groeien in onderwijzen 2.
Leuven, Wolters, 1989.
DE CORTE, E.,
Psychologie en reken/wiskunde-onderwijs.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 1: Achtergron-
den.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
DE CORTE, E.,
Actief leren binnen krachtige onderwijsleeromgevingen.
In: Impuls, jaargang 26, juni 1996, nummer 4, blz. 145-156.
DE CORTE, E., GREER, B., VERSCHAFFEL, L.,
Mathematics teaching and learning.
In: Berliner, D.C. \& Calfee, R., (Red.)
The handbook of educational psychology.
New York, Macmillan, 1996

DE CORTE, E., VERSCHAFFEL, L. \& GREER, B.,
Learning and instruction of mathematics.
In: Husen, T. \& Postlethwaite, T.N., (Eds.)
The international encyclopedia of education.
Oxford, Pergamon, 1994 (2nd edition).
DEWINNE, P. \& FRIANT, L.,
Wiskundig lexicon.
Antwerpen, Standaard, 1995.
FEYS, R.,
New Math: een lang en leerrijk verhaal.
In: Onderwijskrant, april 1995, nummer 86, blz. 20-27.
FEYS, R.,
Mathematics: warming (up) \& warning.
In: Onderwijskrant, februari 1996, nummer 90, blz. 20-37.
FEYS, R.,
Hoe realistisch is 'realistisch' wiskunde-onderwijs.
In: Onderwijskrant, september 1997, nummer 98, blz. 23-35.
FEYS, R.,
Return to whole-class teaching: zorgverbreding en effectief onderwijs.
In: Onderwijskrant, november 1997, nummer 99, blz. 2-12.
FEYS, R.,
Optellen, aftrekken en splitsen tot 20.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 2: Het fundament van gecijferdheid gelegd.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
FEYS, R.,
Getallenkennis, optellen en aftrekken in het getallengebied 20-100.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 2: Het fundament van gecijferdheid gelegd.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
FEYS, R.,
Meten en metend rekenen.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 3: Verder bouwen aan gecijferdheid.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
GOFFREE, F.,
Wiskunde \& Didactiek. Eerste deel.
Groningen, Wolters-Noordhoff, 1982.
GOFFREE, F.,
Wiskunde \& Didactiek. Tweede deel.
Groningen, Wolters-Noordhoff, 1983.

GOFFREE, F.,
Wiskunde \& Didactiek. Derde deel.
Groningen, Wolters-Noordhoff, 1985.
GOFFREE, F.,
Kleuterwiskunde.
Groningen, Wolters-Noordhoff, 1993.
GRAVEMEIJER, K.,
Meetkunde op de basisschool; een meetkundige wereldoriëntatie.
In: Gids voor het basisonderwijs, Curr. 7611
Diegem, Kluwer Editorial, 1988.
GRAVEMEIJER, K. et al., ...
Rekenen en wiskunde, vakdidactische notities.
Rotterdam, 1984.
GRAVEMEIJER, K. \& KRAEMER, J.,
Met het oog op ruimte. (Onderwijskundige Brochuren Reeks 306)
Tilburg, Zwijsen, 1984.
HEYERICK, L.,
Meetkunde.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 3: Verder
bouwen aan gecijferdheid.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
JANSSENS, I.,
Classificeren en seriëren.
Deurne, Plantyn, 1994.
JANSSENS, I.,
Getallen.
Deurne, Plantyn, 1994.

KANTONNALE INSPECTIE

Metend rekenen. Verslag pedagogische week 1988.
Brussel, Ministerie van Onderwijs, 1989.
LAEVERS, F.,
Pedagogiek van de systematische peuter- en kleuteropvoeding.
Leuven, Acco, 1991.
MINISTERIE VAN DE VLAAMSE GEMEENSCHAP,
Basisonderwijs: Ontwikkelingsdoelen en eindtermen. Besluit 27 mei 1997. Decreet 15 juli 1997. Brussel, Departement Onderwijs, Afdeling Informatie en Documentatie, Cel Publicaties, 1997.

PINXTEN, R.,
Cultuur en wiskunde.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 1: Achtergronden.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.

ROMBERG, T.A., et al., ...
Curriculum and evaluation standards for school mathematics. Reston, National council of teachers of mathematics, 1989.

RUIJSSENAARS, A.,
Rekenproblemen. Theorie, diagnostiek, behandeling.
Rotterdam, Lemniscaat, 1992.
RUIJSSENAARS, A.,
Rekenproblemen en rekenstoornissen.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 1: Achtergronden.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
SAVEYN, J.,
Kantekeningen bij de controverse rond open en gesloten curricula.
Nova et vetera, jaargang 62, nummer 3.
SAVEYN, J.,
Leren leren.
Brussel, Vlaams Verbond van het Katholiek Basisonderwijs, 1997.
STRUIK, W., SWEERS, W., TER HEEGE, H., VAN DEN BRINK, J. \& VERMEULEN, W., Het zakrekenmachientje in de basisschool.
In: Gids voor het basisonderwijs, Curr. 7710
Diegem, Kluwer Editorial, 1986.
TER HEEGE, H.,
Vermenigvuldigen en delen als elementaire vaardigheden.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 2: Het fundament van gecijferdheid gelegd.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
TREFFERS, A., DE MOOR, E., FEIJS, E.,
Proeve van een nationaal programma voor het reken-wiskundeonderwijs op de basisschool. Deel 1: Overzicht einddoelen.
Tilburg, Zwijsen, 1989.
TREFFERS, A., DE MOOR, E.,
Proeve van een nationaal programma voor het reken-wiskundeonderwijs op de basisschool. Deel 2:
Basisvaardigheden en cijferen.
Tilburg, Zwijsen, 1990.
TREFFERS, A. \& FEIJS, E.,
Realistisch reken-wiskundeonderwijs.
In: Gids voor het basisonderwiis, Curr. 7010
Diegem, Kluwer Editorial, 1987.
TREFFERS, A., STREEFLAND, L., DE MOOR, E.,
Proeve van een nationaal programma voor het reken-wiskundeonderwijs op de basisschool. Deel 3A: Breuken.
Tilburg, Zwijsen, 1994.

TREFFERS, A., STREEFLAND, L., DE MOOR, E.,
Proeve van een nationaal programma voor het reken-wiskundeonderwijs op de basisschool. Deel 3B:
Kommagetallen.
Tilburg, Zwijsen, 1996.
VAN DEN BRINK, J.,
Tellen en getallen.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 2: Het fundament van gecijferdheid gelegd.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
VAN DEN BRINK, J., TER HEEGE, H., STRUIK, W., SWEERS, W., VERMEULEN, W.,
De taal van de rekenmachine. (Onderwijskundige Brochuren Reeks 319)
Tilburg, Zwijsen, 1988.
VAN DEN HEUVEL-PANHUIZEN, M.,
Toetsen bij reken/wiskunde-onderwijs.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 1: Achtergronden.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
VAN EERDE, D. \& VUURMANS, A.C.,
Psychologie in het reken/wiskundeonderwijs.
Groningen, Wolters-Noordhoff, 1987.
VAN GALEN, F. \& BOSWINKEL, N.,
Tijd.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 3: Verder bouwen aan gecijferdheid.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
VEENMAN, S.,
Effectieve instructie volgens het directe instructiemodel.
In: Pedagogische Studiën, jaargang 69, 1992, blz. 242-269.
VERMEULEN, W.,
Rekenen met de zakrekenmachine.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 3: Verder bouwen aan gecijferdheid.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
VERSCHAFFEL, L.,
Beïnvloeden van leerprocessen.
In: Lowyck, J. \& Verloop, N., (Red.)
Onderwijskunde. Een kennisbasis voor professionals. Groningen, Wolters-Noordhoff, 1995.

VERSCHAFFEL, L.,
Visies op reken/wiskunde-onderwijs.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 1: Achtergron-

den.

Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
VERSCHAFFEL, L.,
Rekenproblemen en -vraagstukken als toepassingsgebied van de vier basisbewerkingen.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 2: Het fundament van gecijferdheid gelegd.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
VERSCHAFFEL, L.,
Computerondersteund wiskundeleren.
In: Verschaffel, L. \& De Corte, E., (Red.)
Naar een nieuwe reken/wiskundedidactiek voor de basisschool en de basiseducatie. Deel 3: Verder bouwen aan gecijferdheid.
Brussel, Studiecentrum voor Open Hoger Afstandsonderwijs (StOHO), Acco, 1995.
VERSCHAFFEL, L., \& DE CORTE, E., Number and arithmetic.
In: Bishop, A., Clements, K., Keitel, C., Kilpatrick J. \& Laborde, C., (Eds.)
International handbook of mathematics education. (Part 1)
Dordrecht, Kluwer Academic Publishers, 1996.

VERSCHAFFEL, L. \& GRAVEMEIJER, K., Contextrijk reken-/wiskundeonderwijs.
In: Gids voor het basisonderwijs, Curr. 7420
Diegem, Kluwer Editorial, 1990.

